Skip to main content
Top
Published in: Current Hematologic Malignancy Reports 5/2016

01-10-2016 | CART and Immunotherapy (M Ruella, Section Editor)

Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You

Authors: Marco Ruella, Carl H. June

Published in: Current Hematologic Malignancy Reports | Issue 5/2016

Login to get access

Abstract

Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.
Literature
1.
go back to reference Ruella M, Gill S. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert opinion on biological therapy. 2015;15(6):761–6. doi:10.1517/14712598.2015.1009888.PubMedCrossRef Ruella M, Gill S. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert opinion on biological therapy. 2015;15(6):761–6. doi:10.​1517/​14712598.​2015.​1009888.PubMedCrossRef
3.
go back to reference Barbee MS, Ogunniyi A, Horvat TZ, Dang TO. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. The Annals of pharmacotherapy. 2015;49(8):907–37. doi:10.1177/1060028015586218.PubMedCrossRef Barbee MS, Ogunniyi A, Horvat TZ, Dang TO. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. The Annals of pharmacotherapy. 2015;49(8):907–37. doi:10.​1177/​1060028015586218​.PubMedCrossRef
7.
go back to reference Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(24):10024–8.PubMedPubMedCentralCrossRef Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America. 1989;86(24):10024–8.PubMedPubMedCentralCrossRef
8.
go back to reference Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochemical and biophysical research communications. 1987;149(3):960–8.PubMedCrossRef Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochemical and biophysical research communications. 1987;149(3):960–8.PubMedCrossRef
9.
go back to reference Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3360–5. doi:10.1073/pnas.0813101106.PubMedPubMedCentralCrossRef Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3360–5. doi:10.​1073/​pnas.​0813101106.PubMedPubMedCentralCrossRef
10.
go back to reference Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular therapy : the journal of the American Society of Gene Therapy. 2010;18(2):413–20. doi:10.1038/mt.2009.210.CrossRef Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular therapy : the journal of the American Society of Gene Therapy. 2010;18(2):413–20. doi:10.​1038/​mt.​2009.​210.CrossRef
13.••
go back to reference Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. The New England journal of medicine. 2011;365(18):1673–83. doi:10.1056/NEJMoa1106152. Key report on the use of a suicide system to turn T cells off and reduce toxicity. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. The New England journal of medicine. 2011;365(18):1673–83. doi:10.​1056/​NEJMoa1106152. Key report on the use of a suicide system to turn T cells off and reduce toxicity.
14.
go back to reference Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Molecular therapy : the journal of the American Society of Gene Therapy. 2009;17(8):1453–64. doi:10.1038/mt.2009.83.CrossRef Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Molecular therapy : the journal of the American Society of Gene Therapy. 2009;17(8):1453–64. doi:10.​1038/​mt.​2009.​83.CrossRef
15.
go back to reference Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–84. doi:10.1038/sj.leu.2403302.PubMedCrossRef Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–84. doi:10.​1038/​sj.​leu.​2403302.PubMedCrossRef
19.
go back to reference Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Mahnke Y, et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2014;124(21):3087. Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Mahnke Y, et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2014;124(21):3087.
20.
go back to reference Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science translational medicine. 2015;7(303):303ra139. doi:10.1126/scitranslmed.aac5415.PubMedCrossRef Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science translational medicine. 2015;7(303):303ra139. doi:10.​1126/​scitranslmed.​aac5415.PubMedCrossRef
21.
go back to reference Porter DL, Frey NV, Melenhorst JJ, Hwang W-T, Lacey SF, Shaw P, et al. Randomized, phase ii dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood. 2014;124(21):1982. Porter DL, Frey NV, Melenhorst JJ, Hwang W-T, Lacey SF, Shaw P, et al. Randomized, phase ii dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood. 2014;124(21):1982.
22.
go back to reference Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Landsburg DJ, et al. Sustained remissions following chimeric antigen receptor modified T Cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2015;126(23):183. Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Landsburg DJ, et al. Sustained remissions following chimeric antigen receptor modified T Cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2015;126(23):183.
23.
go back to reference Grupp SA, Maude SL, Shaw PA, Aplenc R, Barrett DM, Callahan C, et al. Durable remissions in children with relapsed/refractory all treated with t cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126(23):681. Grupp SA, Maude SL, Shaw PA, Aplenc R, Barrett DM, Callahan C, et al. Durable remissions in children with relapsed/refractory all treated with t cells engineered with a CD19-targeted chimeric antigen receptor (CTL019). Blood. 2015;126(23):681.
25.
go back to reference Maude SL, Barrett DM, Ambrose DE, Rheingold SR, Aplenc R, Teachey DT, et al. Efficacy and safety of humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 in children with relapsed/refractory ALL. Blood. 2015;126(23):683. Maude SL, Barrett DM, Ambrose DE, Rheingold SR, Aplenc R, Teachey DT, et al. Efficacy and safety of humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 in children with relapsed/refractory ALL. Blood. 2015;126(23):683.
26.
go back to reference Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8(+) and CD4(+) subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi:10.1038/leu.2015.247.PubMed Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8(+) and CD4(+) subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi:10.​1038/​leu.​2015.​247.PubMed
28.
go back to reference Turtle CJ, Berger C, Sommermeyer D, Hanafi L-A, Pender B, Robinson EM, et al. Anti-CD19 chimeric antigen receptor-modified T Cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood. 2015;126(23):184. Turtle CJ, Berger C, Sommermeyer D, Hanafi L-A, Pender B, Robinson EM, et al. Anti-CD19 chimeric antigen receptor-modified T Cell therapy for B cell non-Hodgkin lymphoma and chronic lymphocytic leukemia: fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood. 2015;126(23):184.
29.
go back to reference Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016. doi:10.1172/JCI85309 Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016. doi:10.​1172/​JCI85309
30.
go back to reference Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(18 Pt 1):5426–35. doi:10.1158/1078-0432.CCR-07-0674.CrossRef Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(18 Pt 1):5426–35. doi:10.​1158/​1078-0432.​CCR-07-0674.CrossRef
31.
go back to reference Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer research. 2006;66(22):10995–1004. doi:10.1158/0008-5472.CAN-06-0160.PubMedCrossRef Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer research. 2006;66(22):10995–1004. doi:10.​1158/​0008-5472.​CAN-06-0160.PubMedCrossRef
33.
go back to reference Park JH RI, Wang X, et al. Phase I trial of autologous CD19- targeted CAR-modified T cells as consolidation after purine analog-based first-line therapy in patients with previously untreated CLL. Blood. 2013;122(21):874. Park JH RI, Wang X, et al. Phase I trial of autologous CD19- targeted CAR-modified T cells as consolidation after purine analog-based first-line therapy in patients with previously untreated CLL. Blood. 2013;122(21):874.
35.
go back to reference Park JH, Riviere I, Wang X, Bernal Y, Purdon T, Halton E, et al. Efficacy and safety of CD19-targeted 19-28z CAR modified T cells in adult patients with relapsed or refractory B-ALL. J Clin Oncol 33, 2015 (suppl; abstr 7010). Park JH, Riviere I, Wang X, Bernal Y, Purdon T, Halton E, et al. Efficacy and safety of CD19-targeted 19-28z CAR modified T cells in adult patients with relapsed or refractory B-ALL. J Clin Oncol 33, 2015 (suppl; abstr 7010).
36.
go back to reference Curran KJ, Riviere I, Silverman LB, Kobos R, Shukla N, Steinherz PG, et al. Multi-center clinical trial of car t cells in pediatric/young adult patients with relapsed B-cell all. Blood. 2015;126(23):2533. Curran KJ, Riviere I, Silverman LB, Kobos R, Shukla N, Steinherz PG, et al. Multi-center clinical trial of car t cells in pediatric/young adult patients with relapsed B-cell all. Blood. 2015;126(23):2533.
37.
go back to reference Sauter CS, Riviere I, Bernal Y, Wang X, Purdon T, Yoo S, et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CART) posthigh dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). J Clin Oncol 33, 2015 (suppl; abstr 8515). Sauter CS, Riviere I, Bernal Y, Wang X, Purdon T, Yoo S, et al. Phase I trial of 19-28z chimeric antigen receptor modified T cells (19-28z CART) posthigh dose therapy and autologous stem cell transplant (HDT-ASCT) for relapsed and refractory (rel/ref) aggressive B-cell non-Hodgkin lymphoma (B-NHL). J Clin Oncol 33, 2015 (suppl; abstr 8515).
38.
go back to reference Gardner RA, Park JR, Kelly-Spratt KS, Finney O, Smithers H, Hoglund V, et al. T cell products of defined CD4:CD8 composition and prescribed levels of CD19CAR/Egfrt transgene expression mediate regression of acute lymphoblastic leukemia in the setting of post-allohsct relapse. Blood. 2014;124(21):3711. Gardner RA, Park JR, Kelly-Spratt KS, Finney O, Smithers H, Hoglund V, et al. T cell products of defined CD4:CD8 composition and prescribed levels of CD19CAR/Egfrt transgene expression mediate regression of acute lymphoblastic leukemia in the setting of post-allohsct relapse. Blood. 2014;124(21):3711.
40.
41.
go back to reference Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. doi:10.1182/blood-2011-10-384388.PubMedPubMedCentralCrossRef Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. doi:10.​1182/​blood-2011-10-384388.PubMedPubMedCentralCrossRef
42.
go back to reference Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi:10.1200/JCO.2014.56.2025.PubMedCrossRef Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi:10.​1200/​JCO.​2014.​56.​2025.PubMedCrossRef
43.
go back to reference Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi:10.1016/S0140-6736(14)61403-3.PubMedCrossRef Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi:10.​1016/​S0140-6736(14)61403-3.PubMedCrossRef
44.
go back to reference Lee DW, Stetler-Stevenson M, Yuan CM, Fry TJ, Shah NN, Delbrook C, et al. Safety and response of incorporating CD19 chimeric antigen receptor T cell therapy in typical salvage regimens for children and young adults with acute lymphoblastic leukemia. Blood. 2015;126(23):684. Lee DW, Stetler-Stevenson M, Yuan CM, Fry TJ, Shah NN, Delbrook C, et al. Safety and response of incorporating CD19 chimeric antigen receptor T cell therapy in typical salvage regimens for children and young adults with acute lymphoblastic leukemia. Blood. 2015;126(23):684.
45.
go back to reference Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016. doi:10.1200/JCO.2015.64.5929 Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016. doi:10.​1200/​JCO.​2015.​64.​5929
46.
go back to reference Better M, Pugach O, Lu L, Somerville R, Kassim S, Kochenderfer J, et al. Rapid cell expansion (RACE) technology for production of engineered autologous T-cell therapy: Path toward manageable multicenter clinical trials in aggressive NHL with anti-CD19 CAR. ASCO Meeting Abstracts. 2014;32(15_suppl):3079. Better M, Pugach O, Lu L, Somerville R, Kassim S, Kochenderfer J, et al. Rapid cell expansion (RACE) technology for production of engineered autologous T-cell therapy: Path toward manageable multicenter clinical trials in aggressive NHL with anti-CD19 CAR. ASCO Meeting Abstracts. 2014;32(15_suppl):3079.
47.
go back to reference Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 clinical results of the ZUMA-1 (KTE-C19-101) study: a phase 1-2 multi-center study evaluating the safety and efficacy of anti-CD19 CAR T cells (KTE-C19) in subjects with refractory aggressive non-Hodgkin lymphoma (NHL). Blood. 2015;126(23):3991. Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 clinical results of the ZUMA-1 (KTE-C19-101) study: a phase 1-2 multi-center study evaluating the safety and efficacy of anti-CD19 CAR T cells (KTE-C19) in subjects with refractory aggressive non-Hodgkin lymphoma (NHL). Blood. 2015;126(23):3991.
48.••
go back to reference Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of clinical investigation. 2011;121(5):1822–6. doi:10.1172/JCI46110. Key report to demonstrate that second-generation CART19 can persist longer than first-generation in a direct comparison. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of clinical investigation. 2011;121(5):1822–6. doi:10.​1172/​JCI46110. Key report to demonstrate that second-generation CART19 can persist longer than first-generation in a direct comparison.
49.
go back to reference Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature medicine. 2008;14(11):1264–70. doi:10.1038/nm.1882.PubMedPubMedCentralCrossRef Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature medicine. 2008;14(11):1264–70. doi:10.​1038/​nm.​1882.PubMedPubMedCentralCrossRef
51.
go back to reference Sun J, Huye LE, Lapteva N, Mamonkin M, Hiregange M, Ballard B, et al. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a production assistant for cell therapy (PACT) translational application. J Immunother Cancer. 2015;3:5. doi:10.1186/s40425-015-0049-1.PubMedPubMedCentralCrossRef Sun J, Huye LE, Lapteva N, Mamonkin M, Hiregange M, Ballard B, et al. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a production assistant for cell therapy (PACT) translational application. J Immunother Cancer. 2015;3:5. doi:10.​1186/​s40425-015-0049-1.PubMedPubMedCentralCrossRef
54.
go back to reference Singh H, Moyes JS, Huls MH, Cooper LJ. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer gene therapy. 2015;22(2):95–100. doi:10.1038/cgt.2014.69.PubMedCrossRef Singh H, Moyes JS, Huls MH, Cooper LJ. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer gene therapy. 2015;22(2):95–100. doi:10.​1038/​cgt.​2014.​69.PubMedCrossRef
55.
go back to reference Huls H, Singh H, Olivares S, Figliola M, Kumar PR, Jena B, et al. First clinical trials employing sleeping beauty gene transfer system and artificial antigen presenting cells to generate and infuse T cells expressing CD19-specific chimeric antigen receptor. Blood. 2013;122(21):166. Huls H, Singh H, Olivares S, Figliola M, Kumar PR, Jena B, et al. First clinical trials employing sleeping beauty gene transfer system and artificial antigen presenting cells to generate and infuse T cells expressing CD19-specific chimeric antigen receptor. Blood. 2013;122(21):166.
57.
go back to reference Kebriaei P, Huls H, Singh H, Olivares S, Figliola M, Maiti S, et al. Adoptive therapy using sleeping beauty gene transfer system and artificial antigen presenting cells to manufacture T cells expressing CD19-specific chimeric antigen receptor. Blood. 2014;124(21):311. Kebriaei P, Huls H, Singh H, Olivares S, Figliola M, Maiti S, et al. Adoptive therapy using sleeping beauty gene transfer system and artificial antigen presenting cells to manufacture T cells expressing CD19-specific chimeric antigen receptor. Blood. 2014;124(21):311.
60.
go back to reference Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Scholler J, et al. Combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells for the treatment and prevention of antigen-loss relapses occurring after CD19-targeted immunotherapies. Blood. 2015;126(23):2523. Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Scholler J, et al. Combination of anti-CD123 and anti-CD19 chimeric antigen receptor T cells for the treatment and prevention of antigen-loss relapses occurring after CD19-targeted immunotherapies. Blood. 2015;126(23):2523.
61.••
go back to reference Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi:10.1158/2159-8290.CD-15-1020. For the first time here, a mechanism of antigen-loss escape after CD19-directed therapies is described.PubMedPubMedCentralCrossRef Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi:10.​1158/​2159-8290.​CD-15-1020. For the first time here, a mechanism of antigen-loss escape after CD19-directed therapies is described.PubMedPubMedCentralCrossRef
62.•
63.
go back to reference Qin H, Zhang L, Orentas RJ, Fry TJ. CD22-targeted chimeric antigen receptor (CAR) T cells containing the 4-1BB costimulatory domain demonstrate enhanced persistence and superior efficacy against B-cell precursor acute lymphoblastic leukemia (ALL) compared to those containing CD28. Blood. 2013;122(21):1431. Qin H, Zhang L, Orentas RJ, Fry TJ. CD22-targeted chimeric antigen receptor (CAR) T cells containing the 4-1BB costimulatory domain demonstrate enhanced persistence and superior efficacy against B-cell precursor acute lymphoblastic leukemia (ALL) compared to those containing CD28. Blood. 2013;122(21):1431.
64.
go back to reference Fry TJ, Stetler-Stevenson M, Shah NN, Yuan CM, Yates B, Delbrook C, et al. Clinical activity and persistence of anti-CD22 chimeric antigen receptor in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):1324. Fry TJ, Stetler-Stevenson M, Shah NN, Yuan CM, Yates B, Delbrook C, et al. Clinical activity and persistence of anti-CD22 chimeric antigen receptor in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):1324.
67.
go back to reference Jensen M, Tan G, Forman S, Wu AM, Raubitschek A. CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 1998;4(2):75–83.CrossRef Jensen M, Tan G, Forman S, Wu AM, Raubitschek A. CD20 is a molecular target for scFvFc:zeta receptor redirected T cells: implications for cellular immunotherapy of CD20+ malignancy. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 1998;4(2):75–83.CrossRef
69.
go back to reference Wang Y, Zhang WY, Han QW, Liu Y, Dai HR, Guo YL, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol. 2014;155(2):160–75. doi:10.1016/j.clim.2014.10.002.PubMedCrossRef Wang Y, Zhang WY, Han QW, Liu Y, Dai HR, Guo YL, et al. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol. 2014;155(2):160–75. doi:10.​1016/​j.​clim.​2014.​10.​002.PubMedCrossRef
71.
go back to reference Savoldo B, Liu E, Gee AP, Mei Z, Grilley BJ, Rooney CM, et al. Clinical responses in patients infused with T lymphocytes redirected to target k-light immunoglobulin chain. Blood. 2013;122(21):506. Savoldo B, Liu E, Gee AP, Mei Z, Grilley BJ, Rooney CM, et al. Clinical responses in patients infused with T lymphocytes redirected to target k-light immunoglobulin chain. Blood. 2013;122(21):506.
72.
go back to reference Ramos CA, Savoldo B, Liu E, Gee AP, Mei Z, Grilley B, et al. Clinical responses in patients infused with T lymphocytes redirected to target kappa-light immunoglobulin chain. Biology of Blood and Marrow Transplant.20(2):S26. doi:10.1016/j.bbmt.2013.12.009. Ramos CA, Savoldo B, Liu E, Gee AP, Mei Z, Grilley B, et al. Clinical responses in patients infused with T lymphocytes redirected to target kappa-light immunoglobulin chain. Biology of Blood and Marrow Transplant.20(2):S26. doi:10.​1016/​j.​bbmt.​2013.​12.​009.
73.
74.
go back to reference Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(12):3153–64. doi:10.1158/1078-0432.CCR-13-0330.CrossRef Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(12):3153–64. doi:10.​1158/​1078-0432.​CCR-13-0330.CrossRef
77.
78.
go back to reference Ramos CA, Ballard B, Liu E, Dakhova O, Mei Z, Liu H, et al. Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood. 2015;126(23):185. Ramos CA, Ballard B, Liu E, Dakhova O, Mei Z, Liu H, et al. Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood. 2015;126(23):185.
79.
go back to reference Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808. doi:10.1200/JCO.2013.51.5304.PubMedCrossRef Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808. doi:10.​1200/​JCO.​2013.​51.​5304.PubMedCrossRef
80.
go back to reference Tang X, Zhou Y, Li W, Tang Q, Chen R, Zhu J, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. Journal of biomedical research. 2014;28(6):468–75. doi:10.7555/JBR.28.20140066.PubMedPubMedCentral Tang X, Zhou Y, Li W, Tang Q, Chen R, Zhu J, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. Journal of biomedical research. 2014;28(6):468–75. doi:10.​7555/​JBR.​28.​20140066.PubMedPubMedCentral
86.
go back to reference Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer immunology, immunotherapy : CII. 2013;62(4):727–36. doi:10.1007/s00262-012-1378-2. Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer immunology, immunotherapy : CII. 2013;62(4):727–36. doi:10.​1007/​s00262-012-1378-2.
87.••
go back to reference Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature medicine. 2003;9(3):279–86. doi:10.1038/nm827. First paper demonstrating the preclinical efficacy of a second-generation CART. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature medicine. 2003;9(3):279–86. doi:10.​1038/​nm827. First paper demonstrating the preclinical efficacy of a second-generation CART.
88.
go back to reference Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, et al. Phase I studies of central-memory-derived CD19 CAR T cell therapy following autologous HSCT in patients with B-cell NHL. Blood. 2016. doi:10.1182/blood-2015-12-686725 Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, et al. Phase I studies of central-memory-derived CD19 CAR T cell therapy following autologous HSCT in patients with B-cell NHL. Blood. 2016. doi:10.​1182/​blood-2015-12-686725
89.
go back to reference Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biology of blood and marrow transplantation. 2010;16(9):1245–56. doi:10.1016/j.bbmt.2010.03.014.PubMedPubMedCentralCrossRef Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biology of blood and marrow transplantation. 2010;16(9):1245–56. doi:10.​1016/​j.​bbmt.​2010.​03.​014.PubMedPubMedCentralCrossRef
90.
go back to reference Hombach AA, Abken H. Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. International journal of cancer Journal international du cancer. 2011;129(12):2935–44. doi:10.1002/ijc.25960.PubMedCrossRef Hombach AA, Abken H. Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. International journal of cancer Journal international du cancer. 2011;129(12):2935–44. doi:10.​1002/​ijc.​25960.PubMedCrossRef
91.
go back to reference Shen CJ, Yang YX, Han EQ, Cao N, Wang YF, Wang Y, et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. Journal of hematology & oncology. 2013;6:33. doi:10.1186/1756-8722-6-33.CrossRef Shen CJ, Yang YX, Han EQ, Cao N, Wang YF, Wang Y, et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. Journal of hematology & oncology. 2013;6:33. doi:10.​1186/​1756-8722-6-33.CrossRef
94.
go back to reference Foster AE, Chang P, Lin P-Y, Crisostomo J, Mahendravada A, Lu A, et al. MyD88/CD40-based costimulation to enhance survival and proliferation of chimeric antigen receptor (CAR)-modified T cells. ASCO Meeting Abstracts. 2015;33(15_suppl):3064. Foster AE, Chang P, Lin P-Y, Crisostomo J, Mahendravada A, Lu A, et al. MyD88/CD40-based costimulation to enhance survival and proliferation of chimeric antigen receptor (CAR)-modified T cells. ASCO Meeting Abstracts. 2015;33(15_suppl):3064.
95.
go back to reference Cheadle EJ, Rothwell DG, Bridgeman JS, Sheard VE, Hawkins RE, Gilham DE. Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther. 2012;19(11):1114–20. doi:10.1038/gt.2011.192.PubMedCrossRef Cheadle EJ, Rothwell DG, Bridgeman JS, Sheard VE, Hawkins RE, Gilham DE. Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther. 2012;19(11):1114–20. doi:10.​1038/​gt.​2011.​192.PubMedCrossRef
96.
go back to reference Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, et al. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer immunology, immunotherapy : CII. 2009;58(12):1991–2001. doi:10.1007/s00262-009-0704-9.PubMedCrossRef Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, et al. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer immunology, immunotherapy : CII. 2009;58(12):1991–2001. doi:10.​1007/​s00262-009-0704-9.PubMedCrossRef
97.
go back to reference Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172(1):104–13.PubMedCrossRef Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172(1):104–13.PubMedCrossRef
98.
go back to reference Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular therapy : the journal of the American Society of Gene Therapy. 2005;12(5):933–41. doi:10.1016/j.ymthe.2005.04.016.CrossRef Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular therapy : the journal of the American Society of Gene Therapy. 2005;12(5):933–41. doi:10.​1016/​j.​ymthe.​2005.​04.​016.CrossRef
99.
go back to reference Dong L, Chang L-J, Gao Z, Lu D-P, Zhang J-P, Wang J-B, et al. Chimeric antigen receptor 4SCAR19-modified T cells in acute lymphoid leukemia: a phase II multi-center clinical trial in china. Blood. 2015;126(23):3774. Dong L, Chang L-J, Gao Z, Lu D-P, Zhang J-P, Wang J-B, et al. Chimeric antigen receptor 4SCAR19-modified T cells in acute lymphoid leukemia: a phase II multi-center clinical trial in china. Blood. 2015;126(23):3774.
100.
go back to reference Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24(6):1160–70. doi:10.1038/leu.2010.75.PubMedPubMedCentralCrossRef Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24(6):1160–70. doi:10.​1038/​leu.​2010.​75.PubMedPubMedCentralCrossRef
101.
go back to reference Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99(9):3179–87.PubMedCrossRef Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99(9):3179–87.PubMedCrossRef
102.
go back to reference Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Molecular therapy : the journal of the American Society of Gene Therapy. 2011;19(4):751–9. doi:10.1038/mt.2010.313.CrossRef Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Molecular therapy : the journal of the American Society of Gene Therapy. 2011;19(4):751–9. doi:10.​1038/​mt.​2010.​313.CrossRef
104.
go back to reference Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer research. 2011;71(17):5697–706. doi:10.1158/0008-5472.CAN-11-0103.PubMedCrossRef Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer research. 2011;71(17):5697–706. doi:10.​1158/​0008-5472.​CAN-11-0103.PubMedCrossRef
106.
108.
go back to reference Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer research. 2015;75(18):3853–64. doi:10.1158/0008-5472.CAN-14-3321.PubMedCrossRef Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer research. 2015;75(18):3853–64. doi:10.​1158/​0008-5472.​CAN-14-3321.PubMedCrossRef
109.
go back to reference Qasim W, Amrolia PJ, Samarasinghe S, Ghorashian S, Zhan H, Stafford S, et al. First clinical application of Talen Engineered Universal CAR19 T cells in B-ALL. Blood. 2015;126(23):2046. Qasim W, Amrolia PJ, Samarasinghe S, Ghorashian S, Zhan H, Stafford S, et al. First clinical application of Talen Engineered Universal CAR19 T cells in B-ALL. Blood. 2015;126(23):2046.
110.
go back to reference Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(3):570–81. doi:10.1038/mt.2015.197.CrossRef Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(3):570–81. doi:10.​1038/​mt.​2015.​197.CrossRef
111.
go back to reference Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-cd19 chimeric antigen receptor. J Clin Oncol. 2014. doi:10.1200/JCO.2014.56.2025 Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-cd19 chimeric antigen receptor. J Clin Oncol. 2014. doi:10.​1200/​JCO.​2014.​56.​2025
113.
go back to reference Frey NV LB, Lacey SF, Grupp SA, Maude SL, Schuster SJ, Shaw P, Hwang WT, Wasik MA, Obstfeld A, Leung M, Shen A, Ericson SG, Melenhorst JJ, June CH and Porter D. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. American Society of Hematology Annual (ASH) Meeting 2014. 2014;Abs #2296. Frey NV LB, Lacey SF, Grupp SA, Maude SL, Schuster SJ, Shaw P, Hwang WT, Wasik MA, Obstfeld A, Leung M, Shen A, Ericson SG, Melenhorst JJ, June CH and Porter D. Refractory cytokine release syndrome in recipients of chimeric antigen receptor (CAR) T cells. American Society of Hematology Annual (ASH) Meeting 2014. 2014;Abs #2296.
119.
go back to reference Tasian SK, Kenderian SS, Shen F, Li Y, Ruella M, Fix WC, et al. Efficient termination of CD123-redirected chimeric antigen receptor T cells for acute myeloid leukemia to mitigate toxicity. Blood. 2015;126(23):565. Tasian SK, Kenderian SS, Shen F, Li Y, Ruella M, Fix WC, et al. Efficient termination of CD123-redirected chimeric antigen receptor T cells for acute myeloid leukemia to mitigate toxicity. Blood. 2015;126(23):565.
125.
go back to reference Jacoby E, Nguyen SM, Welp KM, Qin H, Yang Y, Chien CD, et al. Lineage switch as a relapse mechanism of pre-B acute lymphoblastic leukemia following CD19 CAR. Blood. 2015;126(23):2524. Jacoby E, Nguyen SM, Welp KM, Qin H, Yang Y, Chien CD, et al. Lineage switch as a relapse mechanism of pre-B acute lymphoblastic leukemia following CD19 CAR. Blood. 2015;126(23):2524.
126.
go back to reference Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19 negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy. Blood. 2016. doi:10.1182/blood-2015-08-665547 Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19 negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy. Blood. 2016. doi:10.​1182/​blood-2015-08-665547
127.
go back to reference Qin H, Haso W, Nguyen SM, Fry TJ. Preclinical development of bispecific chimeric antigen receptor targeting both CD19 and CD22. Blood. 2015;126(23):4427. Qin H, Haso W, Nguyen SM, Fry TJ. Preclinical development of bispecific chimeric antigen receptor targeting both CD19 and CD22. Blood. 2015;126(23):4427.
129.
go back to reference Kuramitsu S, Ohno M, Ohka F, Shiina S, Yamamichi A, Kato A, et al. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Cancer gene therapy. 2015;22(10):487–95. doi:10.1038/cgt.2015.47.PubMedCrossRef Kuramitsu S, Ohno M, Ohka F, Shiina S, Yamamichi A, Kato A, et al. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Cancer gene therapy. 2015;22(10):487–95. doi:10.​1038/​cgt.​2015.​47.PubMedCrossRef
132.
go back to reference Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, et al. The Addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016. doi:10.1158/1078-0432.CCR-15-1527 Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, et al. The Addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016. doi:10.​1158/​1078-0432.​CCR-15-1527
133.
go back to reference Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016. doi:10.1182/blood-2015-11-679134 Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016. doi:10.​1182/​blood-2015-11-679134
134.
go back to reference Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016. doi:10.1158/2159-8290.CD-16-0040 Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016. doi:10.​1158/​2159-8290.​CD-16-0040
Metadata
Title
Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You
Authors
Marco Ruella
Carl H. June
Publication date
01-10-2016
Publisher
Springer US
Published in
Current Hematologic Malignancy Reports / Issue 5/2016
Print ISSN: 1558-8211
Electronic ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-016-0336-z

Other articles of this Issue 5/2016

Current Hematologic Malignancy Reports 5/2016 Go to the issue

Myeloproliferative Disorders (C Harrison, Section Editor)

How We Identify and Manage Patients with Inadequately Controlled Polycythemia Vera

Myeloproliferative Disorders (C Harrison, Section Editor)

Transient Abnormal Myelopoiesis and AML in Down Syndrome: an Update

Myeloproliferative Disorders (C Harrison, Section Editor)

Investigation and Management of Erythrocytosis

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.