Skip to main content
Top
Published in: BMC Medicine 1/2022

01-12-2022 | Childhood Asthma | Research article

The influence of childhood asthma on adult height: evidence from the UK Biobank

Authors: Wenwen Chen, Huazhen Yang, Can Hou, Yajing Sun, Yanan Shang, Yu Zeng, Yao Hu, Yuanyuan Qu, Jianwei Zhu, Fang Fang, Donghao Lu, Huan Song

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

To elucidate the influence of childhood asthma on adult height after consideration of genetic heterogeneity in height.

Methods

Based on the UK Biobank, we conducted a matched cohort study, including 13,602 European individuals with asthma diagnosed before 18 years old and 136,008 matched unexposed individuals without such an experience. Ascertainment of asthma was based on self-reported data (97.6%) or clinical diagnosis in healthcare registers (2.4%). We studied three height outcomes, including (1) the attained adult height (in centimeters), (2) the height deviation measured as the difference between a person’s rank of genetically determined height (based on generated polygenetic risk score) and their rank of attained adult height in the study population (deviation in % of height order after standardization), and (3) the presence of height deficit comparing genetically determined and attained height (yes or no). We applied linear mixed-effect models to assess the associations of asthma diagnosed at different ages with attained adult height and height deviation, and conditional logistic regression models to estimate the associations of asthma with the risk of height deficit.

Results

40.07% (59,944/149,610) of the study participants were born before 1950, and most of them were men (57.65%). After controlling for multiple covariates, childhood asthma was associated with shorter attained adult height, irrespective of age at asthma diagnosis. However, in the analysis of height deviation (deviation in %), we observed the greatest height deviation among individuals with asthma diagnosed before 4 years of age (− 2.57 [95% CI − 4.14 to − 1.00] and − 2.80 [95% CI − 4.06 to − 1.54] for the age of ≤ 2 and 3–4 years, respectively). The magnitude of height deviation in relation to asthma declined thereafter and became null after age 6. Similarly, there was a statistically significant height deficit in relation to an asthma diagnosis at ages ≤ 2 and 3–4 (odds ratios = 1.21, 95% CI 1.04 to 1.40, and 1.15, 95% CI 1.02 to 1.29) but not thereafter. The result pattern was similar when separately analyzing asthma with or without inhaled glucocorticoid (ICS) use, despite that the estimates were consistently stronger among asthma individuals who used ICS.

Conclusions

Our results suggest a notable association of childhood asthma, primarily asthma diagnosed at an early age, with adult height, after consideration of genetic heterogeneity in height and use of ICS. This finding highlights the need for surveillance on the growth problems among children with asthma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collaborators GDaIIaP. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet (London, England). 2018;392(10159):1789–858.CrossRef Collaborators GDaIIaP. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet (London, England). 2018;392(10159):1789–858.CrossRef
3.
go back to reference Wolthers OD. Growth problems in children with asthma. Horm Res. 2002;57(Suppl 2):83–7.PubMed Wolthers OD. Growth problems in children with asthma. Horm Res. 2002;57(Suppl 2):83–7.PubMed
4.
go back to reference Baum WF, Schneyer U, Lantzsch AM, Kloditz E. Delay of growth and development in children with bronchial asthma, atopic dermatitis and allergic rhinitis. Exper Clin Endocrinol Diab. 2002;110(2):53–9.CrossRef Baum WF, Schneyer U, Lantzsch AM, Kloditz E. Delay of growth and development in children with bronchial asthma, atopic dermatitis and allergic rhinitis. Exper Clin Endocrinol Diab. 2002;110(2):53–9.CrossRef
5.
go back to reference Khan DA. Exercise-induced bronchoconstriction: burden and prevalence. Allergy Asthma Proc. 2012;33(1):1–6.CrossRef Khan DA. Exercise-induced bronchoconstriction: burden and prevalence. Allergy Asthma Proc. 2012;33(1):1–6.CrossRef
6.
go back to reference Axelsson I, Naumburg E, Prietsch SO, Zhang L. Inhaled corticosteroids in children with persistent asthma: effects of different drugs and delivery devices on growth. Cochrane Database Syst Rev. 2019;6:CD010126.PubMed Axelsson I, Naumburg E, Prietsch SO, Zhang L. Inhaled corticosteroids in children with persistent asthma: effects of different drugs and delivery devices on growth. Cochrane Database Syst Rev. 2019;6:CD010126.PubMed
7.
go back to reference Zhang L, Lasmar LB, Castro-Rodriguez JA. The impact of asthma and its treatment on growth: an evidence-based review. J Pediatr. 2019;95(Suppl 1):10–22.CrossRef Zhang L, Lasmar LB, Castro-Rodriguez JA. The impact of asthma and its treatment on growth: an evidence-based review. J Pediatr. 2019;95(Suppl 1):10–22.CrossRef
8.
go back to reference Eliseeva TI, Geppe NA, Tush EV, Khaletskaya OV, Balabolkin II, Bulgakova VA, et al. Body height of children with bronchial asthma of various severities. Can Respir J. 2017;2017:8761404.PubMedPubMedCentral Eliseeva TI, Geppe NA, Tush EV, Khaletskaya OV, Balabolkin II, Bulgakova VA, et al. Body height of children with bronchial asthma of various severities. Can Respir J. 2017;2017:8761404.PubMedPubMedCentral
9.
go back to reference Protudjer JL, Lundholm C, Bergstrom A, Kull I, Almqvist C. The influence of childhood asthma on puberty and height in Swedish adolescents. Pediatr Allergy Immunol. 2015;26(5):474–81.CrossRef Protudjer JL, Lundholm C, Bergstrom A, Kull I, Almqvist C. The influence of childhood asthma on puberty and height in Swedish adolescents. Pediatr Allergy Immunol. 2015;26(5):474–81.CrossRef
10.
go back to reference Umławska W, Gąszczyk G, Sands D. Physical development in children and adolescents with bronchial asthma. Respir Physiol Neurobiol. 2013;187(1):108–13.CrossRef Umławska W, Gąszczyk G, Sands D. Physical development in children and adolescents with bronchial asthma. Respir Physiol Neurobiol. 2013;187(1):108–13.CrossRef
11.
go back to reference Rona RJ, Smeeton NC, Vargas C, Bustos P, Amigo H. Untreated asthma, final height and sitting height/leg length ratio in Chile. Respir Med. 2006;100(5):911–7.CrossRef Rona RJ, Smeeton NC, Vargas C, Bustos P, Amigo H. Untreated asthma, final height and sitting height/leg length ratio in Chile. Respir Med. 2006;100(5):911–7.CrossRef
12.
go back to reference Moudiou T, Theophilatou D, Priftis K, Papadimitriou A. Growth of asthmatic children before long-term treatment with inhaled corticosteroids. J Asthma. 2003;40(6):667–71.CrossRef Moudiou T, Theophilatou D, Priftis K, Papadimitriou A. Growth of asthmatic children before long-term treatment with inhaled corticosteroids. J Asthma. 2003;40(6):667–71.CrossRef
13.
go back to reference Protudjer JL, Lundholm C, Almqvist C. Asthma and height in twins: a cohort and within-pair analyses study. Twin Res Hum Genet. 2015;18(2):142–50.CrossRef Protudjer JL, Lundholm C, Almqvist C. Asthma and height in twins: a cohort and within-pair analyses study. Twin Res Hum Genet. 2015;18(2):142–50.CrossRef
14.
go back to reference Kelly HW, Strunk RC, Donithan M, Bloomberg GR, McWilliams BC, Szefler S. Growth and bone density in children with mild-moderate asthma: a cross-sectional study in children entering the childhood asthma management program (CAMP). J Pediatr. 2003;142(3):286–91.CrossRef Kelly HW, Strunk RC, Donithan M, Bloomberg GR, McWilliams BC, Szefler S. Growth and bone density in children with mild-moderate asthma: a cross-sectional study in children entering the childhood asthma management program (CAMP). J Pediatr. 2003;142(3):286–91.CrossRef
15.
go back to reference Movin M, Garden FL, Protudjer JL, Ullemar V, Svensdotter F, Andersson D, et al. Impact of childhood asthma on growth trajectories in early adolescence: findings from the childhood asthma prevention study (CAPS). Respirology. 2017;22(3):460–5.CrossRef Movin M, Garden FL, Protudjer JL, Ullemar V, Svensdotter F, Andersson D, et al. Impact of childhood asthma on growth trajectories in early adolescence: findings from the childhood asthma prevention study (CAPS). Respirology. 2017;22(3):460–5.CrossRef
16.
go back to reference Norjavaara E. Gerhardsson De Verdier M, Lindmark B: reduced height in swedish men with asthma at the age of conscription for military service. J Pediatr. 2000;137(1):25–9.CrossRef Norjavaara E. Gerhardsson De Verdier M, Lindmark B: reduced height in swedish men with asthma at the age of conscription for military service. J Pediatr. 2000;137(1):25–9.CrossRef
17.
go back to reference Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86.CrossRef Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86.CrossRef
18.
go back to reference Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.CrossRef Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.CrossRef
20.
go back to reference Pedersen DC, Meyle KD, Ängquist L, Andersen I, Tjønneland A, Linneberg A, et al. Changes and correlations in height from 7 to 69 years of age across the birth years of 1930 to 1989. Am J Human Biol. 2020;32(4):e23378.CrossRef Pedersen DC, Meyle KD, Ängquist L, Andersen I, Tjønneland A, Linneberg A, et al. Changes and correlations in height from 7 to 69 years of age across the birth years of 1930 to 1989. Am J Human Biol. 2020;32(4):e23378.CrossRef
22.
go back to reference Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15(9):2759–72.CrossRef Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15(9):2759–72.CrossRef
23.
go back to reference Asmundson GJG, Paluszek MM, Landry CA, Rachor GS, McKay D, Taylor S. Do pre-existing anxiety-related and mood disorders differentially impact COVID-19 stress responses and coping? J Anxiety Disord. 2020;74:102271.CrossRef Asmundson GJG, Paluszek MM, Landry CA, Rachor GS, McKay D, Taylor S. Do pre-existing anxiety-related and mood disorders differentially impact COVID-19 stress responses and coping? J Anxiety Disord. 2020;74:102271.CrossRef
24.
go back to reference Agertoft L, Pedersen S. Effect of long-term treatment with inhaled budesonide on adult height in children with asthma. N Engl J Med. 2000;343(15):1064–9.CrossRef Agertoft L, Pedersen S. Effect of long-term treatment with inhaled budesonide on adult height in children with asthma. N Engl J Med. 2000;343(15):1064–9.CrossRef
25.
go back to reference Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data. Psychol Methods. 2012;17(1):61–77.CrossRef Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data. Psychol Methods. 2012;17(1):61–77.CrossRef
26.
go back to reference van Buuren S. CGM G-O: mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3). van Buuren S. CGM G-O: mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3).
27.
go back to reference Balfour-Lynn L. Growth and childhood asthma. Arch Dis Child. 1986;61(11):1049–55.CrossRef Balfour-Lynn L. Growth and childhood asthma. Arch Dis Child. 1986;61(11):1049–55.CrossRef
28.
go back to reference Norjavaara E, Gerhardsson de Verdier M, Lindmark B. Adult height in women with childhood asthma--a population-based study. Pharmacoepidemiol Drug Saf. 2001;10(2):121–5.CrossRef Norjavaara E, Gerhardsson de Verdier M, Lindmark B. Adult height in women with childhood asthma--a population-based study. Pharmacoepidemiol Drug Saf. 2001;10(2):121–5.CrossRef
29.
go back to reference Silverstein MD, Yunginger JW, Reed CE, Petterson T, Zimmerman D, Li JT, et al. Attained adult height after childhood asthma: effect of glucocorticoid therapy. J Allergy Clin Immunol. 1997;99(4):466–74.CrossRef Silverstein MD, Yunginger JW, Reed CE, Petterson T, Zimmerman D, Li JT, et al. Attained adult height after childhood asthma: effect of glucocorticoid therapy. J Allergy Clin Immunol. 1997;99(4):466–74.CrossRef
30.
go back to reference Larsson SC, Traylor M, Burgess S, Markus HS. Genetically-predicted adult height and Alzheimer’s disease. J Alzheimers Dis. 2017;60(2):691–8.CrossRef Larsson SC, Traylor M, Burgess S, Markus HS. Genetically-predicted adult height and Alzheimer’s disease. J Alzheimers Dis. 2017;60(2):691–8.CrossRef
31.
go back to reference Doull IJ. The effect of asthma and its treatment on growth. Arch Dis Child. 2004;89(1):60–3.CrossRef Doull IJ. The effect of asthma and its treatment on growth. Arch Dis Child. 2004;89(1):60–3.CrossRef
32.
go back to reference Hauspie R, Susanne C, Alexander F. Maturational delay and temporal growth retardation in asthmatic boys. J Allergy Clin Immunol. 1977;59(3):200–6.CrossRef Hauspie R, Susanne C, Alexander F. Maturational delay and temporal growth retardation in asthmatic boys. J Allergy Clin Immunol. 1977;59(3):200–6.CrossRef
33.
34.
go back to reference Solé D, Spinola Castro AM, Naspitz CK. Growth in allergic children. J Asthma. 1989;26(4):217–21.CrossRef Solé D, Spinola Castro AM, Naspitz CK. Growth in allergic children. J Asthma. 1989;26(4):217–21.CrossRef
36.
go back to reference Richmond E, Rogol AD. Endocrine responses to exercise in the developing child and adolescent. Front Horm Res. 2016;47:58–67.CrossRef Richmond E, Rogol AD. Endocrine responses to exercise in the developing child and adolescent. Front Horm Res. 2016;47:58–67.CrossRef
37.
go back to reference Hancox RJ, Subbarao P, Sears MR. Relevance of birth cohorts to assessment of asthma persistence. Curr Allergy Asthma Rep. 2012;12(3):175–84.CrossRef Hancox RJ, Subbarao P, Sears MR. Relevance of birth cohorts to assessment of asthma persistence. Curr Allergy Asthma Rep. 2012;12(3):175–84.CrossRef
38.
go back to reference McCowan C, Neville RG, Thomas GE, Crombie IK, Clark RA, Ricketts IW, et al. Effect of asthma and its treatment on growth: four year follow up of cohort of children from general practices in Tayside, Scotland. BMJ (Clinical research ed). 1998;316(7132):668–72.CrossRef McCowan C, Neville RG, Thomas GE, Crombie IK, Clark RA, Ricketts IW, et al. Effect of asthma and its treatment on growth: four year follow up of cohort of children from general practices in Tayside, Scotland. BMJ (Clinical research ed). 1998;316(7132):668–72.CrossRef
Metadata
Title
The influence of childhood asthma on adult height: evidence from the UK Biobank
Authors
Wenwen Chen
Huazhen Yang
Can Hou
Yajing Sun
Yanan Shang
Yu Zeng
Yao Hu
Yuanyuan Qu
Jianwei Zhu
Fang Fang
Donghao Lu
Huan Song
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02289-1

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue