Skip to main content
Top
Published in: Inflammation 5/2012

01-10-2012

Chemotactic and Immunoregulatory Properties of Bone Cells are Modulated by Endotoxin-Stimulated Lymphocytes

Authors: Hrvoje Cvija, Natasa Kovacic, Vedran Katavic, Sanja Ivcevic, Hector Leonardo Aguila, Ana Marusic, Danka Grcevic

Published in: Inflammation | Issue 5/2012

Login to get access

Abstract

In our study, we explored the bidirectional communication via soluble factors between bone cells and endotoxin-stimulated splenic lymphocytes in an in vitro coculture model that mimics the inflammatory environment. Both the ability of lymphocytes to affect differentiation and immune properties of bone cells, osteoblasts (OBL) and osteoclasts (OCL), and of bone cells to modulate cytokine and activation profile of endotoxin-stimulated lymphocytes were tested. LPS-pulsed lymphocytes enhanced OCL but inhibited OBL differentiation and increased the RANKL/OPG ratio, and, at the same time, upregulated chemotactic properties of bone cells, specifically CCL2, CCL5, and CXCL10 in OCL and CCL5 and CXCL13 in OBL. In parallel, bone cells had immunosuppressive effects by downregulating the lymphocyte expression of interleukin (IL)-1, IL-6, TNF-α and co-stimulatory molecules. OCL stimulated the production of osteoclastogenic cytokine RANKL in T lymphocytes. The anti-inflammatory effect, especially of OBL, suggests a possible compensatory mechanism to limit the inflammatory reaction during infection.
Literature
1.
go back to reference Lorenzo, J., M. Horowitz, and Y. Choi. 2008. Osteoimmunology: interactions of the bone and immune system. Endocrine Reviews 29: 403–440.PubMedCrossRef Lorenzo, J., M. Horowitz, and Y. Choi. 2008. Osteoimmunology: interactions of the bone and immune system. Endocrine Reviews 29: 403–440.PubMedCrossRef
2.
go back to reference Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.PubMedCrossRef Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.PubMedCrossRef
3.
go back to reference Takayanagi, H. 2010. New immune connections in osteoclast formation. Annals of the New York Academy of Sciences 1192: 117–123.PubMedCrossRef Takayanagi, H. 2010. New immune connections in osteoclast formation. Annals of the New York Academy of Sciences 1192: 117–123.PubMedCrossRef
5.
go back to reference Romas, E., and M.T. Gillespie. 2006. Inflammation-induced bone loss: can it be prevented? Rheumatic Diseases Clinics of North America 32: 759–773.PubMedCrossRef Romas, E., and M.T. Gillespie. 2006. Inflammation-induced bone loss: can it be prevented? Rheumatic Diseases Clinics of North America 32: 759–773.PubMedCrossRef
6.
go back to reference Theill, L.E., W.J. Boyle, and J.M. Penninger. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annual Review of Immunology 20: 795–823.PubMedCrossRef Theill, L.E., W.J. Boyle, and J.M. Penninger. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annual Review of Immunology 20: 795–823.PubMedCrossRef
7.
go back to reference Kaisho, T., and S. Akira. 2000. Critical roles of Toll-like receptors in host defense. Critical Reviews in Immunology 20: 393–405.PubMed Kaisho, T., and S. Akira. 2000. Critical roles of Toll-like receptors in host defense. Critical Reviews in Immunology 20: 393–405.PubMed
8.
go back to reference Makó, V., J. Czúcz, Z. Weiszhár, E. Herczenik, J. Matkó, Z. Prohászka, and L. Cervenak. 2010. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1β, TNF-α, and LPS. Cytometry A 77: 962–970.PubMed Makó, V., J. Czúcz, Z. Weiszhár, E. Herczenik, J. Matkó, Z. Prohászka, and L. Cervenak. 2010. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1β, TNF-α, and LPS. Cytometry A 77: 962–970.PubMed
9.
go back to reference Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, Weitzmann MN, Pacifici R. 207. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. Journal of Clinical Investigation 117: 122-132. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, Weitzmann MN, Pacifici R. 207. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. Journal of Clinical Investigation 117: 122-132.
10.
go back to reference Hayashi, S., T. Yamada, M. Tsuneto, T. Yamane, M. Takahashi, L.D. Shultz, and H. Yamazaki. 2003. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. Journal of Immunology 171: 5130–5139. Hayashi, S., T. Yamada, M. Tsuneto, T. Yamane, M. Takahashi, L.D. Shultz, and H. Yamazaki. 2003. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. Journal of Immunology 171: 5130–5139.
11.
go back to reference Kikuchi, T., T. Matsuguchi, N. Tsuboi, A. Mitani, S. Tanaka, M. Matsuoka, G. Yamamoto, T. Hishikawa, T. Noguchi, and Y. Yoshikai. 2001. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. Journal of Immunology 166: 3574–3579. Kikuchi, T., T. Matsuguchi, N. Tsuboi, A. Mitani, S. Tanaka, M. Matsuoka, G. Yamamoto, T. Hishikawa, T. Noguchi, and Y. Yoshikai. 2001. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. Journal of Immunology 166: 3574–3579.
12.
go back to reference Mormann, M., M. Thederan, I. Nackchbandi, T. Giese, C. Wagner, and G.M. Hansch. 2008. Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Molecular Immunology 45: 3330–3337.PubMedCrossRef Mormann, M., M. Thederan, I. Nackchbandi, T. Giese, C. Wagner, and G.M. Hansch. 2008. Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption. Molecular Immunology 45: 3330–3337.PubMedCrossRef
13.
go back to reference Kozuka, Y., Y. Ozaki, T. Ukai, T. Kaneko, and Y. Hara. 2006. B cells play an important role in lipopolysaccharide-induced bone resorption. Calcified Tissue International 78: 125–132.PubMedCrossRef Kozuka, Y., Y. Ozaki, T. Ukai, T. Kaneko, and Y. Hara. 2006. B cells play an important role in lipopolysaccharide-induced bone resorption. Calcified Tissue International 78: 125–132.PubMedCrossRef
14.
go back to reference Rodo, J., L.A. Goncalves, J. Demengeot, A. Coutinho, and C. Penha-Goncalves. 2006. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation. Journal of Immunology 177: 4620–4626. Rodo, J., L.A. Goncalves, J. Demengeot, A. Coutinho, and C. Penha-Goncalves. 2006. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation. Journal of Immunology 177: 4620–4626.
15.
go back to reference Ozaki, Y., T. Ukai, M. Yamaguchi, M. Yokoyama, E.R. Haro, M. Yoshimoto, T. Kaneko, M. Yoshinaga, H. Nakamura, C. Shiraishi, and Y. Hara. 2009. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption. Bone 44: 1169–1176.PubMedCrossRef Ozaki, Y., T. Ukai, M. Yamaguchi, M. Yokoyama, E.R. Haro, M. Yoshimoto, T. Kaneko, M. Yoshinaga, H. Nakamura, C. Shiraishi, and Y. Hara. 2009. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption. Bone 44: 1169–1176.PubMedCrossRef
16.
go back to reference Teng, Y.T., H. Nguyen, X. Gao, Y.Y. Kong, R.M. Gorczynski, B. Singh, R.P. Ellen, and J.M. Penninger. 2000. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. Journal of Clinical Investigation 106: R59–67.PubMedCrossRef Teng, Y.T., H. Nguyen, X. Gao, Y.Y. Kong, R.M. Gorczynski, B. Singh, R.P. Ellen, and J.M. Penninger. 2000. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. Journal of Clinical Investigation 106: R59–67.PubMedCrossRef
17.
go back to reference Garcia-Martinez, O., C. Reyes-Botella, O. Aguilera-Castillo, M.F. Vallecillo-Capilla, and C. Ruiz. 2006. Antigenic profile of osteoblasts present in human bone tissue sections. Bioscience Reports 26: 39–43.PubMedCrossRef Garcia-Martinez, O., C. Reyes-Botella, O. Aguilera-Castillo, M.F. Vallecillo-Capilla, and C. Ruiz. 2006. Antigenic profile of osteoblasts present in human bone tissue sections. Bioscience Reports 26: 39–43.PubMedCrossRef
18.
go back to reference Sato, K., A. Suematsu, K. Okamoto, A. Yamaguchi, Y. Morishita, Y. Kadono, S. Tanaka, T. Kodama, S. Akira, Y. Iwakura, D.J. Cua, and H. Takayanagi. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Experimental Medicine 203: 2673–2682.PubMedCrossRef Sato, K., A. Suematsu, K. Okamoto, A. Yamaguchi, Y. Morishita, Y. Kadono, S. Tanaka, T. Kodama, S. Akira, Y. Iwakura, D.J. Cua, and H. Takayanagi. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Experimental Medicine 203: 2673–2682.PubMedCrossRef
19.
go back to reference Stanley, K.T., C. VanDort, C. Motyl, J. Endres, and D.A. Fox. 2006. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. Journal of Bone and Mineral Research 21: 29–36.PubMedCrossRef Stanley, K.T., C. VanDort, C. Motyl, J. Endres, and D.A. Fox. 2006. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. Journal of Bone and Mineral Research 21: 29–36.PubMedCrossRef
20.
go back to reference Hegyi, B., B. Sági, J. Kovács, J. Kiss, V.S. Urbán, G. Mészáros, E. Monostori, and F. Uher. 2010. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall. International Immunology 22: 551–559.PubMedCrossRef Hegyi, B., B. Sági, J. Kovács, J. Kiss, V.S. Urbán, G. Mészáros, E. Monostori, and F. Uher. 2010. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall. International Immunology 22: 551–559.PubMedCrossRef
21.
go back to reference Liu, H., D.M. Kemeny, B.C. Heng, H.W. Ouyang, A.J. Melendez, and T. Cao. 2006. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. Journal of Immunology 176: 2864–2871. Liu, H., D.M. Kemeny, B.C. Heng, H.W. Ouyang, A.J. Melendez, and T. Cao. 2006. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. Journal of Immunology 176: 2864–2871.
22.
go back to reference Uccelli, A., L. Moretta, and V. Pistoia. 2006. Immunoregulatory function of mesenchymal stem cells. Eururopean Journal of Immunology 36: 2566–2573.CrossRef Uccelli, A., L. Moretta, and V. Pistoia. 2006. Immunoregulatory function of mesenchymal stem cells. Eururopean Journal of Immunology 36: 2566–2573.CrossRef
23.
go back to reference Waterman, R.S., S.L. Tomchuck, S.L. Henkle, and A.M. Betancourt. 2010. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5: e10088.PubMedCrossRef Waterman, R.S., S.L. Tomchuck, S.L. Henkle, and A.M. Betancourt. 2010. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5: e10088.PubMedCrossRef
24.
go back to reference Li, H., S. Hong, J. Qian, Y. Zheng, J. Yang, and Q. Yi. 2010. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116: 210–217.PubMedCrossRef Li, H., S. Hong, J. Qian, Y. Zheng, J. Yang, and Q. Yi. 2010. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116: 210–217.PubMedCrossRef
25.
go back to reference Lee, S.H., T.S. Kim, Y. Choi, and J. Lorenzo. 2008. Osteoimmunology: cytokines and the skeletal system. BMB Reports 41: 495–510.PubMedCrossRef Lee, S.H., T.S. Kim, Y. Choi, and J. Lorenzo. 2008. Osteoimmunology: cytokines and the skeletal system. BMB Reports 41: 495–510.PubMedCrossRef
26.
go back to reference Ohno, T., N. Okahashi, I. Morisaki, and A. Amano. 2008. Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalis. Oral Microbiology and Immunology 23: 96–104.PubMedCrossRef Ohno, T., N. Okahashi, I. Morisaki, and A. Amano. 2008. Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalis. Oral Microbiology and Immunology 23: 96–104.PubMedCrossRef
27.
go back to reference Silva, T.A., G.P. Garlet, S.Y. Fukada, J.S. Silva, and F.Q. Cunha. 2007. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. Journal of Dental Research 86: 306–319.PubMedCrossRef Silva, T.A., G.P. Garlet, S.Y. Fukada, J.S. Silva, and F.Q. Cunha. 2007. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. Journal of Dental Research 86: 306–319.PubMedCrossRef
28.
go back to reference Kovacic, N., I.K. Lukic, D. Grcevic, V. Katavic, P. Croucher, and A. Marusic. 2007. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. Journal of Immunology 178: 3379–3389. Kovacic, N., I.K. Lukic, D. Grcevic, V. Katavic, P. Croucher, and A. Marusic. 2007. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. Journal of Immunology 178: 3379–3389.
29.
go back to reference Grcevic, D., I.K. Lukic, N. Kovacic, S. Ivcevic, V. Katavic, and A. Marusic. 2006. Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clinical and Experimental Immunology 146: 146–158.PubMedCrossRef Grcevic, D., I.K. Lukic, N. Kovacic, S. Ivcevic, V. Katavic, and A. Marusic. 2006. Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clinical and Experimental Immunology 146: 146–158.PubMedCrossRef
30.
go back to reference Kovacic, N., D. Grcevic, V. Katavic, I.K. Lukic, V. Grubisic, K. Mihovilovic, H. Cvija, P.I. Croucher, and A. Marusic. 2010. Fas receptor is required for estrogen deficiency-induced bone loss in mice. Laboratory Investigation 90: 402–413.PubMedCrossRef Kovacic, N., D. Grcevic, V. Katavic, I.K. Lukic, V. Grubisic, K. Mihovilovic, H. Cvija, P.I. Croucher, and A. Marusic. 2010. Fas receptor is required for estrogen deficiency-induced bone loss in mice. Laboratory Investigation 90: 402–413.PubMedCrossRef
31.
go back to reference Mattern, T., H.D. Flad, L. Brade, E.T. Rietschel, and A.J. Ulmer. 1998. Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. Journal of Immunology 160: 3412–3418. Mattern, T., H.D. Flad, L. Brade, E.T. Rietschel, and A.J. Ulmer. 1998. Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. Journal of Immunology 160: 3412–3418.
32.
go back to reference Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.PubMedCrossRef Janeway Jr., C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.PubMedCrossRef
33.
go back to reference Dumont, N., E. Aubin, D.P. Proulx, R. Lemieux, and R. Bazin. 2009. Increased secretion of hyperimmune antibodies following lipopolysaccharide stimulation of CD40-activated human B cells in vitro. Immunology 126: 588–595.PubMedCrossRef Dumont, N., E. Aubin, D.P. Proulx, R. Lemieux, and R. Bazin. 2009. Increased secretion of hyperimmune antibodies following lipopolysaccharide stimulation of CD40-activated human B cells in vitro. Immunology 126: 588–595.PubMedCrossRef
34.
go back to reference Dye, J.R., A. Palvanov, B. Guo, and T.L. Rothstein. 2007. B cell receptor cross-talk: exposure to lipopolysaccharide induces an alternate pathway for B cell receptor-induced ERK phosphorylation and NF-kappa B activation. Journal of Immunology 179: 229–235. Dye, J.R., A. Palvanov, B. Guo, and T.L. Rothstein. 2007. B cell receptor cross-talk: exposure to lipopolysaccharide induces an alternate pathway for B cell receptor-induced ERK phosphorylation and NF-kappa B activation. Journal of Immunology 179: 229–235.
35.
go back to reference Tough, D.F., S. Sun, and J. Sprent. 1997. T cell stimulation in vivo by lipopolysaccharide (LPS). Journal of Experimental Medicine 185: 2089–2094.PubMedCrossRef Tough, D.F., S. Sun, and J. Sprent. 1997. T cell stimulation in vivo by lipopolysaccharide (LPS). Journal of Experimental Medicine 185: 2089–2094.PubMedCrossRef
36.
go back to reference Matsuguchi, T., K. Takagi, T. Musikacharoen, and Y. Yoshikai. 2000. Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95: 1378–1385.PubMed Matsuguchi, T., K. Takagi, T. Musikacharoen, and Y. Yoshikai. 2000. Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95: 1378–1385.PubMed
37.
go back to reference Cazalis, J., S. Tanabe, G. Gagnon, T. Sorsa, and D. Grenier. 2009. Tetracyclines and chemically modified tetracycline-3 (CMT-3) modulate cytokine secretion by lipopolysaccharide-stimulated whole blood. Inflammation 32: 130–137.PubMedCrossRef Cazalis, J., S. Tanabe, G. Gagnon, T. Sorsa, and D. Grenier. 2009. Tetracyclines and chemically modified tetracycline-3 (CMT-3) modulate cytokine secretion by lipopolysaccharide-stimulated whole blood. Inflammation 32: 130–137.PubMedCrossRef
38.
go back to reference Grcevic, D., S.K. Lee, A. Marusic, and J.A. Lorenzo. 2000. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. Journal of Immunology 165: 4231–4238. Grcevic, D., S.K. Lee, A. Marusic, and J.A. Lorenzo. 2000. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. Journal of Immunology 165: 4231–4238.
39.
go back to reference Craig, M.J., and R.D. Loberg. 2006. CCL2 (Monocyte chemoattractant protein-1) in cancer bone metastases. Cancer and Metastasis Reviews 25: 611–619.PubMedCrossRef Craig, M.J., and R.D. Loberg. 2006. CCL2 (Monocyte chemoattractant protein-1) in cancer bone metastases. Cancer and Metastasis Reviews 25: 611–619.PubMedCrossRef
40.
go back to reference Grassi, F., S. Cristino, S. Toneguzzi, A. Piacentini, A. Facchini, and G. Lisignoli. 2004. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology 199: 244–251.PubMedCrossRef Grassi, F., S. Cristino, S. Toneguzzi, A. Piacentini, A. Facchini, and G. Lisignoli. 2004. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology 199: 244–251.PubMedCrossRef
41.
go back to reference Ryu, O.H., S.J. Choi, A.M. Linares, I.S. Song, Y.J. Kim, K.T. Jang, and T.C. Hart. 2007. Gingival epithelial cell expression of macrophage inflammatory protein-1alpha induced by interleukin-1beta and lipopolysaccharide. Journal of Periodontology 78: 1627–1634.PubMedCrossRef Ryu, O.H., S.J. Choi, A.M. Linares, I.S. Song, Y.J. Kim, K.T. Jang, and T.C. Hart. 2007. Gingival epithelial cell expression of macrophage inflammatory protein-1alpha induced by interleukin-1beta and lipopolysaccharide. Journal of Periodontology 78: 1627–1634.PubMedCrossRef
42.
go back to reference Wright, K.M., and J.S. Friedland. 2004. Regulation of monocyte chemokine and MMP-9 secretion by proinflammatory cytokines in tuberculous osteomyelitis. Journal of Leukocyte Biology 75: 1086–1092.PubMedCrossRef Wright, K.M., and J.S. Friedland. 2004. Regulation of monocyte chemokine and MMP-9 secretion by proinflammatory cytokines in tuberculous osteomyelitis. Journal of Leukocyte Biology 75: 1086–1092.PubMedCrossRef
43.
go back to reference Kim, M.S., C.L. Magno, C.J. Day, and N.A. Morrison. 2006. Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. Journal of Cellular Biochemistry 97: 512–518.PubMedCrossRef Kim, M.S., C.L. Magno, C.J. Day, and N.A. Morrison. 2006. Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. Journal of Cellular Biochemistry 97: 512–518.PubMedCrossRef
44.
go back to reference Kwak, H.B., H. Ha, H.N. Kim, J.H. Lee, H.S. Kim, S. Lee, H.M. Kim, J.Y. Kim, H.H. Kim, Y.W. Song, and Z.H. Lee. 2008. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis & Rheumatism 58: 1332–1342.CrossRef Kwak, H.B., H. Ha, H.N. Kim, J.H. Lee, H.S. Kim, S. Lee, H.M. Kim, J.Y. Kim, H.H. Kim, Y.W. Song, and Z.H. Lee. 2008. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis & Rheumatism 58: 1332–1342.CrossRef
45.
go back to reference Lisignoli, G., S. Cristino, S. Toneguzzi, F. Grassi, A. Piacentini, C. Cavallo, A. Facchini, and E. Mariani. 2004. IL1beta and TNFalpha differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Experimental Gerontology 39: 659–65.PubMedCrossRef Lisignoli, G., S. Cristino, S. Toneguzzi, F. Grassi, A. Piacentini, C. Cavallo, A. Facchini, and E. Mariani. 2004. IL1beta and TNFalpha differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Experimental Gerontology 39: 659–65.PubMedCrossRef
46.
go back to reference Mansour, A., A. Anginot, S.J. Mancini, C. Schiff, G.F. Carle, A. Wakkach, and C. Blin-Wakkach. 2011. Osteoclast activity modulates B-cell development in the bone marrow. Cell Research 21: 1102–1115.PubMedCrossRef Mansour, A., A. Anginot, S.J. Mancini, C. Schiff, G.F. Carle, A. Wakkach, and C. Blin-Wakkach. 2011. Osteoclast activity modulates B-cell development in the bone marrow. Cell Research 21: 1102–1115.PubMedCrossRef
47.
go back to reference Liu, J., S. Wang, P. Zhang, N. Said-Al-Naief, S.M. Michalek, and X. Feng. 2009. Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. Journal of Biological Chemistry 284: 12512–1223.PubMedCrossRef Liu, J., S. Wang, P. Zhang, N. Said-Al-Naief, S.M. Michalek, and X. Feng. 2009. Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. Journal of Biological Chemistry 284: 12512–1223.PubMedCrossRef
Metadata
Title
Chemotactic and Immunoregulatory Properties of Bone Cells are Modulated by Endotoxin-Stimulated Lymphocytes
Authors
Hrvoje Cvija
Natasa Kovacic
Vedran Katavic
Sanja Ivcevic
Hector Leonardo Aguila
Ana Marusic
Danka Grcevic
Publication date
01-10-2012
Publisher
Springer US
Published in
Inflammation / Issue 5/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9477-y

Other articles of this Issue 5/2012

Inflammation 5/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.