Skip to main content
Top
Published in: European Radiology 4/2015

01-04-2015 | Magnetic Resonance

Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

Authors: Li Yang, Shanshan Wang, Bin Yao, Lili Li, Xiaofei Xu, Lingfei Guo, Lianxin Zhao, Xinjuan Zhang, Weibo Chen, Queenie Chan, Guangbin Wang

Published in: European Radiology | Issue 4/2015

Login to get access

Abstract

Objectives

The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique.

Methods

PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation.

Results

White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01).

Conclusions

The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images.

Key Points

Phase difference enhanced (PADRE) imaging can yield diverse contrasts between tissues
The PADRE technique utilizes the inherent variety of magnetic susceptibilities
PADRE MR imaging provides better visualization of certain cerebral anatomy in vivo
PADRE imaging is able to delineate the stria of Gennari in the primary visual cortex
PADRE imaging is able to identify the two optic radiation layers
Literature
1.
go back to reference Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR (2005) Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 26:736–742PubMed Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR (2005) Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 26:736–742PubMed
2.
go back to reference Abduljalil AM, Schmalbrock P, Novak V, Chakeres DW (2003) Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. J Magn Reson Imaging 18:284–290CrossRefPubMed Abduljalil AM, Schmalbrock P, Novak V, Chakeres DW (2003) Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. J Magn Reson Imaging 18:284–290CrossRefPubMed
3.
go back to reference Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801CrossRefPubMedCentralPubMed Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801CrossRefPubMedCentralPubMed
4.
go back to reference Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618CrossRefPubMed
5.
go back to reference Hammond KE, Lupo JM, Xu D et al (2008) Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 39:1682–1692CrossRefPubMedCentralPubMed Hammond KE, Lupo JM, Xu D et al (2008) Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 39:1682–1692CrossRefPubMedCentralPubMed
6.
7.
go back to reference Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467CrossRefPubMed Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467CrossRefPubMed
8.
go back to reference Yoneda T, Hirai T, Hiai Y, et al (2009) Triple-layer appearance of human cerebral cortices on phase-difference enhanced imaging using 3D principle of echo shifting with a train of observations (PRESTO) sequence. Proc Int Soc Magn Reson Med pp 27 Yoneda T, Hirai T, Hiai Y, et al (2009) Triple-layer appearance of human cerebral cortices on phase-difference enhanced imaging using 3D principle of echo shifting with a train of observations (PRESTO) sequence. Proc Int Soc Magn Reson Med pp 27
9.
go back to reference Hagberg GE, Welch EB, Greiser A (2010) The sign convention for phase values on different vendor systems: definition and implications for susceptibility-weighted imaging. Magn Reson Imaging 28:297–300CrossRefPubMed Hagberg GE, Welch EB, Greiser A (2010) The sign convention for phase values on different vendor systems: definition and implications for susceptibility-weighted imaging. Magn Reson Imaging 28:297–300CrossRefPubMed
10.
go back to reference Yamada N, Imakita S, Sakuma T, Takamiya M (1996) Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology 198:171–178CrossRefPubMed Yamada N, Imakita S, Sakuma T, Takamiya M (1996) Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology 198:171–178CrossRefPubMed
11.
go back to reference Robinson RJ, Bhuta S (2011) Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 21:e189–e204CrossRefPubMed Robinson RJ, Bhuta S (2011) Susceptibility-weighted imaging of the brain: current utility and potential applications. J Neuroimaging 21:e189–e204CrossRefPubMed
12.
go back to reference Kakeda S, Korogi Y, Yoneda T et al (2011) A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy. Eur Radiol 21:2202–2210CrossRefPubMed Kakeda S, Korogi Y, Yoneda T et al (2011) A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy. Eur Radiol 21:2202–2210CrossRefPubMed
13.
go back to reference Kakeda S, Korogi Y, Yoneda T et al (2013) Parkinson’s disease: diagnostic potential of high-resolution phase difference enhanced MR imaging at 3 T. Eur Radiol 23:1102–1111CrossRefPubMed Kakeda S, Korogi Y, Yoneda T et al (2013) Parkinson’s disease: diagnostic potential of high-resolution phase difference enhanced MR imaging at 3 T. Eur Radiol 23:1102–1111CrossRefPubMed
14.
go back to reference Haacke EM, Ayaz M, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264CrossRefPubMed Haacke EM, Ayaz M, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264CrossRefPubMed
15.
go back to reference Series SC (2003) Measurement of observer agreement. Radiology 228:303–308CrossRef Series SC (2003) Measurement of observer agreement. Radiology 228:303–308CrossRef
16.
go back to reference Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRefPubMed Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428CrossRefPubMed
17.
go back to reference Mori N, Miki Y, Kasahara S et al (2009) Susceptibility-weighted imaging at 3 Tesla delineates the optic radiation. Invest Radiol 44:140–145CrossRefPubMed Mori N, Miki Y, Kasahara S et al (2009) Susceptibility-weighted imaging at 3 Tesla delineates the optic radiation. Invest Radiol 44:140–145CrossRefPubMed
18.
go back to reference Trampel R, Ott DV, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21:2075–2081CrossRefPubMed Trampel R, Ott DV, Turner R (2011) Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. Cereb Cortex 21:2075–2081CrossRefPubMed
19.
go back to reference Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424CrossRefPubMed Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424CrossRefPubMed
20.
go back to reference Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839CrossRefPubMedCentralPubMed Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839CrossRefPubMedCentralPubMed
21.
go back to reference Ide S, Kakeda S, Korogi Y et al (2012) Delineation of optic radiation and stria of Gennari on high-resolution phase difference enhanced imaging. Acad Radiol 19:1283–1289CrossRefPubMed Ide S, Kakeda S, Korogi Y et al (2012) Delineation of optic radiation and stria of Gennari on high-resolution phase difference enhanced imaging. Acad Radiol 19:1283–1289CrossRefPubMed
22.
go back to reference Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn J (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. Neuroimage 32:1032–1040CrossRefPubMed Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn J (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. Neuroimage 32:1032–1040CrossRefPubMed
23.
go back to reference Kitajima M, Korogi Y, Takahashi M, Eto K (1996) MR signal intensity of the optic radiation. Am J Neuroradiol 17:1379–1383PubMed Kitajima M, Korogi Y, Takahashi M, Eto K (1996) MR signal intensity of the optic radiation. Am J Neuroradiol 17:1379–1383PubMed
24.
go back to reference Petridou N, Wharton SJ, Lotfipour A, Gowland P, Bowtell R (2010) Investigating the effect of blood susceptibility on phase contrast in the human brain. Neuroimage 50:491–498CrossRefPubMed Petridou N, Wharton SJ, Lotfipour A, Gowland P, Bowtell R (2010) Investigating the effect of blood susceptibility on phase contrast in the human brain. Neuroimage 50:491–498CrossRefPubMed
25.
go back to reference Lee J, Hirano Y, Fukunaga M, Silva AC, Duyn JH (2010) On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field. Neuroimage 49:193–198CrossRefPubMedCentralPubMed Lee J, Hirano Y, Fukunaga M, Silva AC, Duyn JH (2010) On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field. Neuroimage 49:193–198CrossRefPubMedCentralPubMed
26.
go back to reference Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMedCentralPubMed Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMedCentralPubMed
27.
go back to reference Lee J, Shmueli K, Kang BT et al (2012) The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. Neuroimage 59:3967–3975CrossRefPubMedCentralPubMed Lee J, Shmueli K, Kang BT et al (2012) The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain. Neuroimage 59:3967–3975CrossRefPubMedCentralPubMed
28.
29.
go back to reference Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93CrossRefPubMed Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93CrossRefPubMed
30.
go back to reference Bell MA, Ball MJ (1985) Laminar variation in the microvascular architecture of normal human visual cortex (area 17). Brain Res 335:139–143CrossRefPubMed Bell MA, Ball MJ (1985) Laminar variation in the microvascular architecture of normal human visual cortex (area 17). Brain Res 335:139–143CrossRefPubMed
31.
go back to reference Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25CrossRefPubMed Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25CrossRefPubMed
32.
go back to reference Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9:1061–1068PubMed Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9:1061–1068PubMed
33.
go back to reference Brady S, Siegel G, Albers RW, Price D (2005) Basic Neurochemistry: Molecular, cellular and medical aspects. Academic Press Brady S, Siegel G, Albers RW, Price D (2005) Basic Neurochemistry: Molecular, cellular and medical aspects. Academic Press
34.
go back to reference Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage 56:930–938CrossRefPubMedCentralPubMed Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. Neuroimage 56:930–938CrossRefPubMedCentralPubMed
35.
go back to reference Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677CrossRefPubMed Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D (1994) In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 31:673–677CrossRefPubMed
36.
go back to reference Zhong K, Leupold J, von Elverfeldt D, Speck O (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566CrossRefPubMed Zhong K, Leupold J, von Elverfeldt D, Speck O (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566CrossRefPubMed
37.
38.
go back to reference Saini J, Kesavadas C, Thomas B et al (2009) Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia 50:1462–1473CrossRefPubMed Saini J, Kesavadas C, Thomas B et al (2009) Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia 50:1462–1473CrossRefPubMed
39.
go back to reference Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50(Suppl 9):9–18CrossRefPubMed Madan N, Grant PE (2009) New directions in clinical imaging of cortical dysplasias. Epilepsia 50(Suppl 9):9–18CrossRefPubMed
40.
go back to reference van Rooden S, Versluis MJ, Liem MK et al (2014) Cortical phase changes in Alzheimer's disease at 7 T MRI: A novel imaging marker. Alzheimers Dement 10:e19–e26CrossRefPubMed van Rooden S, Versluis MJ, Liem MK et al (2014) Cortical phase changes in Alzheimer's disease at 7 T MRI: A novel imaging marker. Alzheimers Dement 10:e19–e26CrossRefPubMed
41.
go back to reference Bridge H, Clare S (2006) High-resolution MRI: in vivo histology? Philos Trans R Soc B Biol Sci 361:137–146CrossRef Bridge H, Clare S (2006) High-resolution MRI: in vivo histology? Philos Trans R Soc B Biol Sci 361:137–146CrossRef
Metadata
Title
Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T
Authors
Li Yang
Shanshan Wang
Bin Yao
Lili Li
Xiaofei Xu
Lingfei Guo
Lianxin Zhao
Xinjuan Zhang
Weibo Chen
Queenie Chan
Guangbin Wang
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 4/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3480-7

Other articles of this Issue 4/2015

European Radiology 4/2015 Go to the issue