Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Characterization of two HIV-1 infectors during initial antiretroviral treatment, and the emergence of phenotypic resistance in reverse transcriptase-associated mutation patterns

Authors: Wei Guo, Jingwan Han, Daomin Zhuang, Siyang Liu, Yongjian Liu, Lin Li, Hanping Li, Zuoyi Bao, Fujiang Wang, Jingyun Li

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Highly active antiretroviral therapy (HAART) is recommended to control the infection of HIV-1. HIV-1 drug resistance becomes an obstacle to HAART due to the accumulation of specific mutations in the RT coding region. The development of resistance mutations may be more complex than previously thought.

Methods

We followed two HIV-1 infectors from a HIV-1 drug resistance surveillance cohort in Henan province and evaluated CD4+ T-cell number and viral load thereafter at ten time-periods and characterized their reverse transcriptase-associated mutation patterns at each time point. Then we constructed the recombinant virus strains with these mutation patterns to mimick the viruses and test the phenotypic resistance caused by the mutation patterns on TZM-b1 cells.

Results

CD4+ T-cell number initially increased and then decreased rapidly, while viral load decreased and then dropped sharply during initial antiretroviral treatment. The number of mutations and the combination patterns of mutations increased over time. According to the phenotypic resistance performed by recombinant virus strains, VirusT215Y/V179E/Y181C/H221Y exhibited high levels of resistance to EFV (5.57-fold), and T215Y/V179E-containing virus increased 20.20-fold in AZT resistance (p < 0.01). VirusT215Y/V179E/Y181C increased markedly in EFV resistance (p < 0.01). The IC50 for VirusT215Y/V179E/H221Y was similar to that for VirusT215Y/V179E/Y181C. VirusT215Y/K103N/Y181C/H221Y induced a dramatic IC50 increase of all the four agents (Efavirenz EFV, Zidovudine AZT, Lamivudine 3TC, and Stavudine d4T) (p < 0.01). As for VirusT215Y/K103N/Y181C, only the IC50 of EFV was significantly increased. T215Y/K103N resulted in a 26.36-fold increase in EFV (p < 0.01). T215Y/K103N/H221Y significantly increased the resistance to AZT and 3TC. The IC50 of EFV with T215Y/V179E was lower than with T215Y/K103N (F = 93.10, P < 0.0001). With T215Y/V179E, Y181C significantly increase in EFV resistance, while the interaction between 181 and 221 in EFV was not statistically significant (F = 1.20, P = 0.3052). With T215Y/K103N, neither H221Y nor Y181C showed a significant increase in EFV resistance, but the interaction between 181 and 221 was statistically significant (F = 38.12, P = 0.0003).

Conclusions

Data in this study suggests that pathways of viral evolution toward drug resistance appear to proceed through distinct steps and at different rates. Phenotypic resistance using recombinant virus strains with different combination of mutation patterns reveals that interactions among mutations may provide information on the impact of these mutations on drug resistance. All the result provides reference to optimize clinical treatment schedule.
Literature
1.
go back to reference Antinori A, Liuzzi G, Cingolani A, Bertoli A, Di Giambenedetto S, Trotta MP, et al. Drug-resistant mutants of HIV-1 in patients exhibiting increasing CD4 cell count despite virological failure of highly active antiretroviral therapy. AIDS. 2001;15(17):2325–7.CrossRefPubMed Antinori A, Liuzzi G, Cingolani A, Bertoli A, Di Giambenedetto S, Trotta MP, et al. Drug-resistant mutants of HIV-1 in patients exhibiting increasing CD4 cell count despite virological failure of highly active antiretroviral therapy. AIDS. 2001;15(17):2325–7.CrossRefPubMed
2.
go back to reference Francesca Ceccherini-Silberstein VS, Tobias S, Anna A, Maria Mercedes S, Federica F, Ada B, et al. Characterization and structural analysis of novel mutations in human immunodeficiency virus type 1 reverse transcriptase involved in the regulation of resistance to Nonnucleoside inhibitors. J Virol. 2007;81(20):13. Francesca Ceccherini-Silberstein VS, Tobias S, Anna A, Maria Mercedes S, Federica F, Ada B, et al. Characterization and structural analysis of novel mutations in human immunodeficiency virus type 1 reverse transcriptase involved in the regulation of resistance to Nonnucleoside inhibitors. J Virol. 2007;81(20):13.
3.
go back to reference Sing T, Svicher V, Beerenwinkel N, Ceccherini-Silberstein F, Däumer M, Kaiser R, et al. Characterization of novel hiv drug resistance mutations using clustering, multidimensional scaling and svm-based feature ranking. In: Jorge A, Torgo L, Brazdil P, Camacho R, Gama J, editors. Knowledge discovery in databases: PKDD 2005. Volume 3721. Berlin Heidelberg: Springer; 2005. p. 285–96.CrossRef Sing T, Svicher V, Beerenwinkel N, Ceccherini-Silberstein F, Däumer M, Kaiser R, et al. Characterization of novel hiv drug resistance mutations using clustering, multidimensional scaling and svm-based feature ranking. In: Jorge A, Torgo L, Brazdil P, Camacho R, Gama J, editors. Knowledge discovery in databases: PKDD 2005. Volume 3721. Berlin Heidelberg: Springer; 2005. p. 285–96.CrossRef
4.
go back to reference Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev. 2008;10(2):67.PubMedCentralPubMed Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev. 2008;10(2):67.PubMedCentralPubMed
5.
go back to reference Johnson VA, Calvez V, Günthard HF, Paredes R, Pillay D, Shafer RW, et al. Update of the Drug Resistance Mutations in HIV-1: March 2013. Top Antivir Med. 2013;21(1):6–14.PubMed Johnson VA, Calvez V, Günthard HF, Paredes R, Pillay D, Shafer RW, et al. Update of the Drug Resistance Mutations in HIV-1: March 2013. Top Antivir Med. 2013;21(1):6–14.PubMed
6.
go back to reference Johnson VA, Calvez V, Günthard HF, Paredes R, Pillay D, Shafer R, et al. Update of the drug resistance mutations in HIV-1. HIV Med. 2011;2011(18):156–63. Johnson VA, Calvez V, Günthard HF, Paredes R, Pillay D, Shafer R, et al. Update of the drug resistance mutations in HIV-1. HIV Med. 2011;2011(18):156–63.
7.
go back to reference Svicher V, Sing T, Santoro MM, Forbici F, Rodríguez-Barrios F, Bertoli A, et al. Involvement of novel human immunodeficiency virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol. 2006;80(14):7186–98.PubMedCentralCrossRefPubMed Svicher V, Sing T, Santoro MM, Forbici F, Rodríguez-Barrios F, Bertoli A, et al. Involvement of novel human immunodeficiency virus type 1 reverse transcriptase mutations in the regulation of resistance to nucleoside inhibitors. J Virol. 2006;80(14):7186–98.PubMedCentralCrossRefPubMed
8.
go back to reference Van Laethem K, Witvrouw M, Pannecouque C, Van Remoortel B, Schmit J-C, Esnouf R, et al. Mutations in the non-nucleoside binding-pocket interfere with the multi-nucleoside resistance phenotype. AIDS. 2001;15(5):553–61.CrossRefPubMed Van Laethem K, Witvrouw M, Pannecouque C, Van Remoortel B, Schmit J-C, Esnouf R, et al. Mutations in the non-nucleoside binding-pocket interfere with the multi-nucleoside resistance phenotype. AIDS. 2001;15(5):553–61.CrossRefPubMed
9.
go back to reference Ren J, Stammers DK. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res. 2008;134(1):157–70.CrossRefPubMed Ren J, Stammers DK. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res. 2008;134(1):157–70.CrossRefPubMed
10.
go back to reference Bacheler L, Jeffrey S, Hanna G, D’Aquila R, Wallace L, Logue K, et al. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol. 2001;75(11):4999–5008.PubMedCentralCrossRefPubMed Bacheler L, Jeffrey S, Hanna G, D’Aquila R, Wallace L, Logue K, et al. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol. 2001;75(11):4999–5008.PubMedCentralCrossRefPubMed
11.
go back to reference Demeter LM, Shafer RW, Meehan PM, Holden-Wiltse J, Fischl MA, Freimuth WW, et al. Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase I/II trial of delavirdine monotherapy (ACTG 260). Antimicrob Agents Chemother. 2000;44(3):794–7.PubMedCentralCrossRefPubMed Demeter LM, Shafer RW, Meehan PM, Holden-Wiltse J, Fischl MA, Freimuth WW, et al. Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase I/II trial of delavirdine monotherapy (ACTG 260). Antimicrob Agents Chemother. 2000;44(3):794–7.PubMedCentralCrossRefPubMed
12.
go back to reference Saracino A, Monno L, Scudeller L, Cibelli D, Tartaglia A, Punzi G, et al. Impact of unreported HIV‐1 reverse transcriptase mutations on phenotypic resistance to nucleoside and non‐nucleoside inhibitors. J Med Virol. 2006;78(1):9–17.CrossRefPubMed Saracino A, Monno L, Scudeller L, Cibelli D, Tartaglia A, Punzi G, et al. Impact of unreported HIV‐1 reverse transcriptase mutations on phenotypic resistance to nucleoside and non‐nucleoside inhibitors. J Med Virol. 2006;78(1):9–17.CrossRefPubMed
13.
go back to reference He X, Xing H, Ruan Y, Hong K, Cheng C, Hu Y, et al. A comprehensive mapping of HIV-1 genotypes in various risk groups and regions across China based on a nationwide molecular epidemiologic survey. PLoS One. 2012;7(10):e47289.PubMedCentralCrossRefPubMed He X, Xing H, Ruan Y, Hong K, Cheng C, Hu Y, et al. A comprehensive mapping of HIV-1 genotypes in various risk groups and regions across China based on a nationwide molecular epidemiologic survey. PLoS One. 2012;7(10):e47289.PubMedCentralCrossRefPubMed
14.
go back to reference Li H, Guo W, Liu Y, Bao Z, Li L, Zhuang D, Liu S, et al. Prevalence status and mutation pattern of H221Y in subtype B’of HIV-1. Natl Med J China. 2012;92(4):4. Li H, Guo W, Liu Y, Bao Z, Li L, Zhuang D, Liu S, et al. Prevalence status and mutation pattern of H221Y in subtype B’of HIV-1. Natl Med J China. 2012;92(4):4.
15.
go back to reference Gonzales MJ, Wu TD, Taylor J, Belitskaya I, Kantor R, Israelski D, et al. Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple nucleoside analog inhibitors. AIDS (London, England). 2003;17(6):791.CrossRef Gonzales MJ, Wu TD, Taylor J, Belitskaya I, Kantor R, Israelski D, et al. Extended spectrum of HIV-1 reverse transcriptase mutations in patients receiving multiple nucleoside analog inhibitors. AIDS (London, England). 2003;17(6):791.CrossRef
16.
go back to reference van Opijnen T, Berkhout B. The host environment drives HIV-1 fitness. Rev Med Virol. 2005;15(4):219–33.CrossRefPubMed van Opijnen T, Berkhout B. The host environment drives HIV-1 fitness. Rev Med Virol. 2005;15(4):219–33.CrossRefPubMed
17.
go back to reference Shulman N, Zolopa AR, Passaro D, Shafer RW, Huang W, Katzenstein D, et al. Phenotypic hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in treatment-experienced HIV-infected patients: impact on virological response to efavirenz-based therapy. AIDS. 2001;15(9):1125–32.CrossRefPubMed Shulman N, Zolopa AR, Passaro D, Shafer RW, Huang W, Katzenstein D, et al. Phenotypic hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in treatment-experienced HIV-infected patients: impact on virological response to efavirenz-based therapy. AIDS. 2001;15(9):1125–32.CrossRefPubMed
18.
go back to reference Guo W, Li H, Zhuang D, Jiao L, Liu S, Li L, et al. Impact of Y181C and/or H221Y mutation patterns of HIV-1 reverse transcriptase on phenotypic resistance to available non-nucleoside and nucleoside inhibitors in China. BMC Infect Dis. 2014;14:237.PubMedCentralCrossRefPubMed Guo W, Li H, Zhuang D, Jiao L, Liu S, Li L, et al. Impact of Y181C and/or H221Y mutation patterns of HIV-1 reverse transcriptase on phenotypic resistance to available non-nucleoside and nucleoside inhibitors in China. BMC Infect Dis. 2014;14:237.PubMedCentralCrossRefPubMed
19.
go back to reference van de Vijver DA, Wensing AM, Angarano G, Asjo B, Balotta C, Boeri E, et al. The calculated genetic barrier for antiretroviral drug resistance substitutions is largely similar for different HIV-1 subtypes. J Acquir Immune Defic Syndr. 2006;41(3):352–60.CrossRefPubMed van de Vijver DA, Wensing AM, Angarano G, Asjo B, Balotta C, Boeri E, et al. The calculated genetic barrier for antiretroviral drug resistance substitutions is largely similar for different HIV-1 subtypes. J Acquir Immune Defic Syndr. 2006;41(3):352–60.CrossRefPubMed
20.
go back to reference Larder BA. Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J Gen Virol. 1994;75(5):951–7.CrossRefPubMed Larder BA. Interactions between drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J Gen Virol. 1994;75(5):951–7.CrossRefPubMed
21.
go back to reference Jiao L, Li H, Li L, Zhuang D, Liu Y, Bao Z, et al. Impact of novel resistance profiles in hiv-1 reverse transcriptase on phenotypic resistance to NVP. AIDS Res Treat. 2012;2012:637263.PubMedCentralPubMed Jiao L, Li H, Li L, Zhuang D, Liu Y, Bao Z, et al. Impact of novel resistance profiles in hiv-1 reverse transcriptase on phenotypic resistance to NVP. AIDS Res Treat. 2012;2012:637263.PubMedCentralPubMed
22.
go back to reference Back N, Nijhuis M, Keulen W, Boucher C, Essink BO, Van Kuilenburg A, et al. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J. 1996;15(15):4040.PubMedCentralPubMed Back N, Nijhuis M, Keulen W, Boucher C, Essink BO, Van Kuilenburg A, et al. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J. 1996;15(15):4040.PubMedCentralPubMed
23.
go back to reference HIVdb: Genotypic Resistance Interpretation Algorithm. HIVdb: Genotypic Resistance Interpretation Algorithm.
24.
go back to reference Shahriar R, Rhee SY, Liu TF, Fessel WJ, Scarsella A, Towner W, et al. Nonpolymorphic human immunodeficiency virus type 1 protease and reverse transcriptase treatment-selected mutations. Antimicrob Agents Chemother. 2009;53(11):4869–78.PubMedCentralCrossRefPubMed Shahriar R, Rhee SY, Liu TF, Fessel WJ, Scarsella A, Towner W, et al. Nonpolymorphic human immunodeficiency virus type 1 protease and reverse transcriptase treatment-selected mutations. Antimicrob Agents Chemother. 2009;53(11):4869–78.PubMedCentralCrossRefPubMed
25.
go back to reference Rimsky L, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J Acquir Immune Defic Syndr. 2012;59(1):39–46.CrossRefPubMed Rimsky L, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J Acquir Immune Defic Syndr. 2012;59(1):39–46.CrossRefPubMed
26.
go back to reference Melikian GL, Rhee SY, Varghese V, Porter D, White K, Taylor J, et al. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J Antimicrob Chemother. 2014;69(1):12–20.PubMedCentralCrossRefPubMed Melikian GL, Rhee SY, Varghese V, Porter D, White K, Taylor J, et al. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J Antimicrob Chemother. 2014;69(1):12–20.PubMedCentralCrossRefPubMed
27.
go back to reference Baldanti F, Paolucci S, Maga G, Labo N, Hübscher U, Skoblov AY, et al. Nevirapine-selected mutations Y181I/C of HIV-1 reverse transcriptase confer cross-resistance to stavudine. AIDS. 2003;17(10):1568–70.CrossRefPubMed Baldanti F, Paolucci S, Maga G, Labo N, Hübscher U, Skoblov AY, et al. Nevirapine-selected mutations Y181I/C of HIV-1 reverse transcriptase confer cross-resistance to stavudine. AIDS. 2003;17(10):1568–70.CrossRefPubMed
28.
go back to reference Blanca G, Baldanti F, Paolucci S, Skoblov AY, Victorova L, Hübscher U, et al. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity. J Biol Chem. 2003;278(18):15469–72.CrossRefPubMed Blanca G, Baldanti F, Paolucci S, Skoblov AY, Victorova L, Hübscher U, et al. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity. J Biol Chem. 2003;278(18):15469–72.CrossRefPubMed
29.
go back to reference Bacheler LT, Anton ED, Kudish P, Baker D, Bunville J, Krakowski K, et al. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob. Agents Chemother Agents Chemother. 2000;44:10.CrossRef Bacheler LT, Anton ED, Kudish P, Baker D, Bunville J, Krakowski K, et al. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob. Agents Chemother Agents Chemother. 2000;44:10.CrossRef
30.
go back to reference Schader SM, Oliveira M, Ibanescu R-I, Moisi D, Colby-Germinario SP, Wainberg MA. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine. Antimicrob Agents Chemother. 2012;56(2):751–6.PubMedCentralCrossRefPubMed Schader SM, Oliveira M, Ibanescu R-I, Moisi D, Colby-Germinario SP, Wainberg MA. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine. Antimicrob Agents Chemother. 2012;56(2):751–6.PubMedCentralCrossRefPubMed
31.
go back to reference Nikolenko GN, Delviks-Frankenberry KA, Pathak VK. A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol. 2010;84(10):5238–49.PubMedCentralCrossRefPubMed Nikolenko GN, Delviks-Frankenberry KA, Pathak VK. A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol. 2010;84(10):5238–49.PubMedCentralCrossRefPubMed
32.
go back to reference Lengruber RB, Delviks-Frankenberry KA, Nikolenko GN, Baumann J, Santos AF, Pathak VK, et al. Phenotypic characterization of drug resistance-associated mutations in HIV-1 RT connection and RNase H domains and their correlation with thymidine analogue mutations. J Antimicrob Chemother. 2011;66(4):702–8.PubMedCentralCrossRefPubMed Lengruber RB, Delviks-Frankenberry KA, Nikolenko GN, Baumann J, Santos AF, Pathak VK, et al. Phenotypic characterization of drug resistance-associated mutations in HIV-1 RT connection and RNase H domains and their correlation with thymidine analogue mutations. J Antimicrob Chemother. 2011;66(4):702–8.PubMedCentralCrossRefPubMed
Metadata
Title
Characterization of two HIV-1 infectors during initial antiretroviral treatment, and the emergence of phenotypic resistance in reverse transcriptase-associated mutation patterns
Authors
Wei Guo
Jingwan Han
Daomin Zhuang
Siyang Liu
Yongjian Liu
Lin Li
Hanping Li
Zuoyi Bao
Fujiang Wang
Jingyun Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0417-y

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.