Skip to main content
Top
Published in: Critical Care 5/2009

Open Access 01-10-2009 | Research

Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds

Authors: Hernando Gómez, Jaume Mesquida, Peter Simon, Hyung Kook Kim, Juan C Puyana, Can Ince, Michael R Pinsky

Published in: Critical Care | Special Issue 5/2009

Login to get access

Abstract

Introduction

Tissue oxygen saturation (StO2) and the vascular occlusion test (VOT) can identify tissue hypoperfusion in trauma and sepsis. However, the technique is neither standardized nor uses the same monitoring site. We hypothesized that baseline and VOT StO2 would be different in the forearm (F) and thenar eminence (TH) and that different minimal StO2 values during the VOT would result in different reoxygenation rates (ReO2).

Methods

StO2 and its change during the VOT were simultaneously measured in the F and TH, with 15 mm and 25 mm probes, using the 325 InSpectra monitor in 18 healthy, adult volunteers. Two VOTs were done to a threshold thenar StO2 of 40% interchanging the 15 mm and 25 mm probes between sites. Two additional VOTs were done to thresholds of 50% and 30%. Baseline StO2 (BaseO2), the deoxygenation rate (DeO2) and ReO2 were compared between sites, probes and (%O2/minute) thresholds. Results are presented as the median (interquartile range), P-value.

Results

BaseO2, DeO2, ReO2, area under the curve and hyperemia duration values were different when comparing TH vs. F and 15 mm vs. 25 mm probes. ReO2 was different between different thresholds for the TH and 15 mm probes. TH15 mm vs. F15 mm: BaseO2, 90.4 (85.2, 93.5) vs. 85.2 (80.7, 90.2), P = 0.031; DO2, -12.1 (-16.2, -11.3) vs. -8.5 (-10.3, -7.8), P = 0.011; ReO2, 297.2 (213.7, 328.6), P < 0.0001; 15 mm vs. 25 mm probe: BaseO2, 97.2 (89.4, 94.7) vs. 87.3 (81.7, 90.9), P = 0.016; DeO2, -18.0 (-24.1, -14.8) vs. -9.9 (-15.3, -6.5), P < 0.0001; and ReO2, 401.6 (331.7, 543.2) vs. 160.5 (132.3, 366.9), P = 0.012, respectively. TH15 mm vs. TH25 mm: BaseO2, P = 0.020; DeO2, P < 0.0001; and ReO2, P < 0.0001. Threshold StO2 values (15 mm probe only): ReO2, P = 0.003; DeO2, P = 0.60. ReO2 at 40% and 50% StO2 thresholds, P = 0.01.

Conclusions

BaseO2, DeO2 and ReO2 were different when measured in different anatomical sites (F and TH) and with different probe sizes, and ReO2 was different with differing VOT release StO2 threshold values. Thus, standardization of the site, probe and VOT challenge need to be stipulated when reporting data.
Literature
1.
go back to reference Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, Beilman GJ: Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma 2007, 62: 44-54. discussion 54-55 10.1097/TA.0b013e31802eb817CrossRefPubMed Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, Beilman GJ: Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma 2007, 62: 44-54. discussion 54-55 10.1097/TA.0b013e31802eb817CrossRefPubMed
2.
go back to reference Crookes BA, Cohn SM, Bloch S, Amortegui J, Manning R, Li P, Proctor MS, Hallal A, Blackbourne LH, Benjamin R, Soffer D, Habib F, Schulman CI, Duncan R, Proctor KG: Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma 2005, 58: 806-813. discussion 813-816 10.1097/01.TA.0000158269.68409.1CCrossRefPubMed Crookes BA, Cohn SM, Bloch S, Amortegui J, Manning R, Li P, Proctor MS, Hallal A, Blackbourne LH, Benjamin R, Soffer D, Habib F, Schulman CI, Duncan R, Proctor KG: Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma 2005, 58: 806-813. discussion 813-816 10.1097/01.TA.0000158269.68409.1CCrossRefPubMed
3.
go back to reference Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB: Physiological and medical monitoring for en route care of combat casualties. J Trauma 2008,64(4 Suppl):S342-S353. 10.1097/TA.0b013e31816c82f4CrossRefPubMed Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB: Physiological and medical monitoring for en route care of combat casualties. J Trauma 2008,64(4 Suppl):S342-S353. 10.1097/TA.0b013e31816c82f4CrossRefPubMed
4.
go back to reference Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL: The prognostic value of muscle StO 2 in septic patients. Intensive Care Med 2007, 33: 1549-1556. 10.1007/s00134-007-0739-3CrossRefPubMed Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL: The prognostic value of muscle StO 2 in septic patients. Intensive Care Med 2007, 33: 1549-1556. 10.1007/s00134-007-0739-3CrossRefPubMed
5.
go back to reference Gomez H, Torres A, Polanco P, Kim H, Zenker S, Puyana J, Pinsky M: Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O 2 saturation response. Intensive Care Med 2008, 34: 1600-1607. 10.1007/s00134-008-1145-1CrossRefPubMed Gomez H, Torres A, Polanco P, Kim H, Zenker S, Puyana J, Pinsky M: Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O 2 saturation response. Intensive Care Med 2008, 34: 1600-1607. 10.1007/s00134-008-1145-1CrossRefPubMed
6.
go back to reference De Blasi RA, Quaglia E, Gasparetto A, Ferrari M: Muscle oxygenation by fast near infrared spectrophotometry (NIRS) in ischemic forearm. Adv Exp Med Biol 1992, 316: 163-172.CrossRefPubMed De Blasi RA, Quaglia E, Gasparetto A, Ferrari M: Muscle oxygenation by fast near infrared spectrophotometry (NIRS) in ischemic forearm. Adv Exp Med Biol 1992, 316: 163-172.CrossRefPubMed
7.
go back to reference Podbregar M, Mozina H: Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock. Crit Care 2007, 11: R6. 10.1186/cc5153PubMedCentralCrossRefPubMed Podbregar M, Mozina H: Skeletal muscle oxygen saturation does not estimate mixed venous oxygen saturation in patients with severe left heart failure and additional severe sepsis or septic shock. Crit Care 2007, 11: R6. 10.1186/cc5153PubMedCentralCrossRefPubMed
8.
go back to reference Soller BR, Ryan KL, Rickards CA, Cooke WH, Yang Y, Soyemi OO, Crookes BA, Heard SO, Convertino VA: Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans. Crit Care Med 2008, 36: 176-182. 10.1097/01.CCM.0000295586.83787.7ECrossRefPubMed Soller BR, Ryan KL, Rickards CA, Cooke WH, Yang Y, Soyemi OO, Crookes BA, Heard SO, Convertino VA: Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans. Crit Care Med 2008, 36: 176-182. 10.1097/01.CCM.0000295586.83787.7ECrossRefPubMed
9.
go back to reference Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, Pinsky MR: Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O 2 saturation response. Intensive Care Med 2008, 34: 1600-1607. 10.1007/s00134-008-1145-1CrossRefPubMed Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, Pinsky MR: Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O 2 saturation response. Intensive Care Med 2008, 34: 1600-1607. 10.1007/s00134-008-1145-1CrossRefPubMed
10.
go back to reference Siafaka A, Angelopoulos E, Kritikos K, Poriazi M, Basios N, Gerovasili V, Andreou A, Roussos C, Nanas S: Acute effects of smoking on skeletal muscle microcirculation monitored by near-infrared spectroscopy. Chest 2007, 131: 1479-1485. 10.1378/chest.06-2017CrossRefPubMed Siafaka A, Angelopoulos E, Kritikos K, Poriazi M, Basios N, Gerovasili V, Andreou A, Roussos C, Nanas S: Acute effects of smoking on skeletal muscle microcirculation monitored by near-infrared spectroscopy. Chest 2007, 131: 1479-1485. 10.1378/chest.06-2017CrossRefPubMed
11.
go back to reference Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ: Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 2007, 27: 348-353. 10.1097/01.shk.0000239779.25775.e4CrossRefPubMed Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ: Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 2007, 27: 348-353. 10.1097/01.shk.0000239779.25775.e4CrossRefPubMed
12.
go back to reference Yang Y, Soyemi O, Scott PJ, Landry MR, Lee SM, Stroud L, Soller B: Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy. Opt Express 2007, 15: 13715-13730. 10.1364/OE.15.013715CrossRefPubMed Yang Y, Soyemi O, Scott PJ, Landry MR, Lee SM, Stroud L, Soller B: Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy. Opt Express 2007, 15: 13715-13730. 10.1364/OE.15.013715CrossRefPubMed
13.
go back to reference De Blasi RA, Cope M, Elwell C, Safoue F, Ferrari M: Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy. Eur J Appl Physiol Occup Physiol 1993, 67: 20-25. 10.1007/BF00377698CrossRefPubMed De Blasi RA, Cope M, Elwell C, Safoue F, Ferrari M: Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy. Eur J Appl Physiol Occup Physiol 1993, 67: 20-25. 10.1007/BF00377698CrossRefPubMed
14.
go back to reference Creteur J: Muscle StO 2 in critically ill patients. Curr Opin Crit Care 2008, 14: 361-366. 10.1097/MCC.0b013e3282fad4e1CrossRefPubMed Creteur J: Muscle StO 2 in critically ill patients. Curr Opin Crit Care 2008, 14: 361-366. 10.1097/MCC.0b013e3282fad4e1CrossRefPubMed
15.
go back to reference Ince C, Bezemer R, Lima A: Letters to the editor: Near infrared spectroscopy. Crit Care Med 2009, 37: 384-385. 10.1097/CCM.0b013e3181932d42CrossRefPubMed Ince C, Bezemer R, Lima A: Letters to the editor: Near infrared spectroscopy. Crit Care Med 2009, 37: 384-385. 10.1097/CCM.0b013e3181932d42CrossRefPubMed
Metadata
Title
Characterization of tissue oxygen saturation and the vascular occlusion test: influence of measurement sites, probe sizes and deflation thresholds
Authors
Hernando Gómez
Jaume Mesquida
Peter Simon
Hyung Kook Kim
Juan C Puyana
Can Ince
Michael R Pinsky
Publication date
01-10-2009
Publisher
BioMed Central
Published in
Critical Care / Issue Special Issue 5/2009
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc8001

Other articles of this Special Issue 5/2009

Critical Care 5/2009 Go to the issue