Skip to main content
Top
Published in: Neuroscience Bulletin 1/2016

01-02-2016 | Original Article

Characterization of Rebound Depolarization in Neurons of the Rat Medial Geniculate Body In Vitro

Authors: Xin-Xing Wang, Yan Jin, Hui Sun, Chunlei Ma, Jinsheng Zhang, Ming Wang, Lin Chen

Published in: Neuroscience Bulletin | Issue 1/2016

Login to get access

Abstract

Rebound depolarization (RD) is a response to the offset from hyperpolarization of the neuronal membrane potential and is an important mechanism for the synaptic processing of inhibitory signals. In the present study, we characterized RD in neurons of the rat medial geniculate body (MGB), a nucleus of the auditory thalamus, using whole-cell patch-clamp and brain slices. RD was proportional in strength to the duration and magnitude of the hyperpolarization; was effectively blocked by Ni2+ or Mibefradil; and was depressed when the resting membrane potential was hyperpolarized by blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels with ZD7288 or by activating G-protein-gated inwardly-rectifying K+ (GIRK) channels with baclofen. Our results demonstrated that RD in MGB neurons, which is carried by T-type Ca2+ channels, is critically regulated by HCN channels and likely by GIRK channels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grenier F, Timofeev I, Steriade M. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proc Natl Acad Sci U S A 1998, 95: 13929–13934.PubMedCentralCrossRefPubMed Grenier F, Timofeev I, Steriade M. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proc Natl Acad Sci U S A 1998, 95: 13929–13934.PubMedCentralCrossRefPubMed
2.
go back to reference Zheng N, Raman IM. Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 2009, 29: 9826–9838.PubMedCentralCrossRefPubMed Zheng N, Raman IM. Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei. J Neurosci 2009, 29: 9826–9838.PubMedCentralCrossRefPubMed
3.
go back to reference Yu YQ, Xiong Y, Chan YS, He J. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 2004, 24: 3060–3069.CrossRefPubMed Yu YQ, Xiong Y, Chan YS, He J. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 2004, 24: 3060–3069.CrossRefPubMed
4.
go back to reference Hu B, Mooney DM. Burst firing induces a slow after hyperpolarization in rat auditory thalamus. Neurosci Lett 2005, 375: 162–164.CrossRefPubMed Hu B, Mooney DM. Burst firing induces a slow after hyperpolarization in rat auditory thalamus. Neurosci Lett 2005, 375: 162–164.CrossRefPubMed
5.
go back to reference Bartlett EL, Smith PH. Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 1999, 81: 1999–2016.PubMed Bartlett EL, Smith PH. Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 1999, 81: 1999–2016.PubMed
6.
go back to reference Sun H, Wu SH. Physiological characteristics of postinhibitory rebound depolarization in neurons of the rat’s dorsal cortex of the inferior colliculus studied in vitro. Brain Res 2008, 1226: 70–81.CrossRefPubMed Sun H, Wu SH. Physiological characteristics of postinhibitory rebound depolarization in neurons of the rat’s dorsal cortex of the inferior colliculus studied in vitro. Brain Res 2008, 1226: 70–81.CrossRefPubMed
7.
go back to reference Felix RA, 2nd, Fridberger A, Leijon S, Berrebi AS, Magnusson AK. Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 2011, 31: 12566–12578.PubMedCentralCrossRefPubMed Felix RA, 2nd, Fridberger A, Leijon S, Berrebi AS, Magnusson AK. Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 2011, 31: 12566–12578.PubMedCentralCrossRefPubMed
8.
go back to reference Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID. The sound of silence: ionic mechanisms encoding sound termination. Neuron 2011, 71: 911–925.CrossRefPubMed Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID. The sound of silence: ionic mechanisms encoding sound termination. Neuron 2011, 71: 911–925.CrossRefPubMed
9.
go back to reference Wang X, Yu G, Hou X, Zhou J, Yang B, Zhang L. Rebound bursts in GABAergic neurons of the thalamic reticular nucleus in postnatal mice. Physiol Res 2010, 59: 273–280.PubMed Wang X, Yu G, Hou X, Zhou J, Yang B, Zhang L. Rebound bursts in GABAergic neurons of the thalamic reticular nucleus in postnatal mice. Physiol Res 2010, 59: 273–280.PubMed
10.
go back to reference Tennigkeit F, Schwarz DW, Puil E. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Neuroscience 1998, 83: 1063–1073.CrossRefPubMed Tennigkeit F, Schwarz DW, Puil E. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Neuroscience 1998, 83: 1063–1073.CrossRefPubMed
11.
go back to reference Tennigkeit F, Schwarz DW, Puil E. GABA(B) receptor activation changes membrane and filter properties of auditory thalamic neurons. Hear Res 1998, 122: 18–24.CrossRefPubMed Tennigkeit F, Schwarz DW, Puil E. GABA(B) receptor activation changes membrane and filter properties of auditory thalamic neurons. Hear Res 1998, 122: 18–24.CrossRefPubMed
12.
go back to reference Large EW, Crawford JD. Auditory temporal computation: interval selectivity based on post-inhibitory rebound. J Comput Neurosci 2002, 13: 125–142.CrossRefPubMed Large EW, Crawford JD. Auditory temporal computation: interval selectivity based on post-inhibitory rebound. J Comput Neurosci 2002, 13: 125–142.CrossRefPubMed
13.
go back to reference Casseday JH, Ehrlich D, Covey E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 1994, 264: 847–850.CrossRefPubMed Casseday JH, Ehrlich D, Covey E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 1994, 264: 847–850.CrossRefPubMed
14.
go back to reference Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 1997, 42: 27–37.CrossRefPubMed Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 1997, 42: 27–37.CrossRefPubMed
15.
16.
go back to reference Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J. Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 2008, 99: 2938–2945.CrossRefPubMed Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J. Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 2008, 99: 2938–2945.CrossRefPubMed
17.
go back to reference Saint Marie RL, Stanforth DA, Jubelier EM. Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 1997, 765: 173–176.CrossRefPubMed Saint Marie RL, Stanforth DA, Jubelier EM. Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 1997, 765: 173–176.CrossRefPubMed
18.
go back to reference Lee CC, Sherman SM. Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 2010, 107: 372–377.PubMedCentralCrossRefPubMed Lee CC, Sherman SM. Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 2010, 107: 372–377.PubMedCentralCrossRefPubMed
19.
go back to reference Kimura A, Donishi T, Okamoto K, Tamai Y. Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat. Neuroscience 2005, 135: 1325–1342.CrossRefPubMed Kimura A, Donishi T, Okamoto K, Tamai Y. Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat. Neuroscience 2005, 135: 1325–1342.CrossRefPubMed
20.
go back to reference Winer JA, Saint Marie RL, Larue DT, Oliver DL. GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 1996, 93: 8005–8010.PubMedCentralCrossRefPubMed Winer JA, Saint Marie RL, Larue DT, Oliver DL. GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 1996, 93: 8005–8010.PubMedCentralCrossRefPubMed
21.
go back to reference Peruzzi D, Bartlett E, Smith PH, Oliver DL. A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 1997, 17: 3766–3777.PubMed Peruzzi D, Bartlett E, Smith PH, Oliver DL. A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 1997, 17: 3766–3777.PubMed
22.
go back to reference Yu YQ, Xiong Y, Chan YS, He J. In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. J Physiol 2004, 560: 191–205.PubMedCentralCrossRefPubMed Yu YQ, Xiong Y, Chan YS, He J. In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. J Physiol 2004, 560: 191–205.PubMedCentralCrossRefPubMed
23.
go back to reference Ulrich D, Huguenard JR. GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. J Neurophysiol 1997, 78: 1748–1751.PubMed Ulrich D, Huguenard JR. GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. J Neurophysiol 1997, 78: 1748–1751.PubMed
24.
go back to reference Schwarz DW, Tennigkeit F, Adam T, Finlayson P, Puil E. Membrane properties that shape the auditory code in three nuclei of the central nervous system. J Otolaryngol 1998, 27: 311–317.PubMed Schwarz DW, Tennigkeit F, Adam T, Finlayson P, Puil E. Membrane properties that shape the auditory code in three nuclei of the central nervous system. J Otolaryngol 1998, 27: 311–317.PubMed
25.
go back to reference Luo B, Wang HT, Su YY, Wu SH, Chen L. Activation of presynaptic GABAB receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body. Hear Res 2011, 280: 157–165.CrossRefPubMed Luo B, Wang HT, Su YY, Wu SH, Chen L. Activation of presynaptic GABAB receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body. Hear Res 2011, 280: 157–165.CrossRefPubMed
26.
go back to reference Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010, 90: 291–366.CrossRefPubMed Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010, 90: 291–366.CrossRefPubMed
27.
go back to reference Quayle JM, McCarron JG, Brayden JE, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am J Physiol 1993, 265: C1363–1370.PubMed Quayle JM, McCarron JG, Brayden JE, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am J Physiol 1993, 265: C1363–1370.PubMed
28.
go back to reference Franchini L, Levi G, Visentin S. Inwardly rectifying K+ channels influence Ca2+ entry due to nucleotide receptor activation in microglia. Cell Calcium 2004, 35: 449–459.CrossRefPubMed Franchini L, Levi G, Visentin S. Inwardly rectifying K+ channels influence Ca2+ entry due to nucleotide receptor activation in microglia. Cell Calcium 2004, 35: 449–459.CrossRefPubMed
29.
go back to reference Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999, 405: 299–321.CrossRefPubMed Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999, 405: 299–321.CrossRefPubMed
30.
go back to reference Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol 2010, 58: 123–147.CrossRefPubMed Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol 2010, 58: 123–147.CrossRefPubMed
31.
go back to reference Surges R, Sarvari M, Steffens M, Els T. Characterization of rebound depolarization in hippocampal neurons. Biochem Biophys Res Commun 2006, 348: 1343–1349.CrossRefPubMed Surges R, Sarvari M, Steffens M, Els T. Characterization of rebound depolarization in hippocampal neurons. Biochem Biophys Res Commun 2006, 348: 1343–1349.CrossRefPubMed
32.
go back to reference Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 2008, 100: 2684–2701.CrossRefPubMed Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 2008, 100: 2684–2701.CrossRefPubMed
33.
go back to reference Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. Cerebellum 2010, 9: 352–374.PubMedCentralCrossRefPubMed Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. Cerebellum 2010, 9: 352–374.PubMedCentralCrossRefPubMed
34.
go back to reference Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003, 83: 117–161.CrossRefPubMed Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003, 83: 117–161.CrossRefPubMed
36.
go back to reference Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996, 58: 329–348.CrossRefPubMed Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996, 58: 329–348.CrossRefPubMed
37.
go back to reference Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998, 18: 3574–3588.PubMed Destexhe A, Neubig M, Ulrich D, Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 1998, 18: 3574–3588.PubMed
38.
go back to reference Munsch T, Budde T, Pape HC. Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 1997, 8: 2411–2418.CrossRefPubMed Munsch T, Budde T, Pape HC. Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 1997, 8: 2411–2418.CrossRefPubMed
39.
go back to reference Errington AC, Renger JJ, Uebele VN, Crunelli V. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 2010, 30: 14843–14853.PubMedCentralCrossRefPubMed Errington AC, Renger JJ, Uebele VN, Crunelli V. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 2010, 30: 14843–14853.PubMedCentralCrossRefPubMed
40.
go back to reference Yunker AM, McEnery MW. Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 2003, 35: 533–575.CrossRefPubMed Yunker AM, McEnery MW. Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 2003, 35: 533–575.CrossRefPubMed
41.
go back to reference Tarasenko AN, Kostyuk PG, Eremin AV, Isaev DS. Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. J Physiol 1997, 499 (Pt 1): 77–86.PubMedCentralCrossRefPubMed Tarasenko AN, Kostyuk PG, Eremin AV, Isaev DS. Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. J Physiol 1997, 499 (Pt 1): 77–86.PubMedCentralCrossRefPubMed
42.
go back to reference Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 2004, 471: 241–276.CrossRefPubMed Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 2004, 471: 241–276.CrossRefPubMed
43.
go back to reference Moosmang S, Biel M, Hofmann F, Ludwig A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem 1999, 380: 975–980.CrossRefPubMed Moosmang S, Biel M, Hofmann F, Ludwig A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem 1999, 380: 975–980.CrossRefPubMed
44.
go back to reference Luthi A, McCormick DA. Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. Nat Neurosci 1999, 2: 634–641.CrossRefPubMed Luthi A, McCormick DA. Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. Nat Neurosci 1999, 2: 634–641.CrossRefPubMed
45.
go back to reference McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997, 20: 185–215.CrossRefPubMed McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997, 20: 185–215.CrossRefPubMed
46.
go back to reference Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996, 58: 299–327.CrossRefPubMed Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996, 58: 299–327.CrossRefPubMed
47.
go back to reference Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993, 262: 679–685.CrossRefPubMed Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993, 262: 679–685.CrossRefPubMed
48.
go back to reference McCormick DA, Pape HC. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 1990, 431: 291–318.PubMedCentralCrossRefPubMed McCormick DA, Pape HC. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 1990, 431: 291–318.PubMedCentralCrossRefPubMed
49.
go back to reference Bal T, McCormick DA. What stops synchronized thalamocortical oscillations? Neuron 1996, 17: 297–308.CrossRefPubMed Bal T, McCormick DA. What stops synchronized thalamocortical oscillations? Neuron 1996, 17: 297–308.CrossRefPubMed
50.
go back to reference McCormick DA, Huguenard JR. A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 1992, 68: 1384–1400.PubMed McCormick DA, Huguenard JR. A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 1992, 68: 1384–1400.PubMed
51.
go back to reference Sutor B, Hablitz JJ. Influence of barium on rectification in rat neocortical neurons. Neurosci Lett 1993, 157: 62–66.CrossRefPubMed Sutor B, Hablitz JJ. Influence of barium on rectification in rat neocortical neurons. Neurosci Lett 1993, 157: 62–66.CrossRefPubMed
52.
go back to reference Fernandez-Alacid L, Watanabe M, Molnar E, Wickman K, Lujan R. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 2011, 34: 1724–1736.PubMedCentralCrossRefPubMed Fernandez-Alacid L, Watanabe M, Molnar E, Wickman K, Lujan R. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 2011, 34: 1724–1736.PubMedCentralCrossRefPubMed
53.
go back to reference Karschin C, Schreibmayer W, Dascal N, Lester H, Davidson N, Karschin A. Distribution and localization of a G protein-coupled inwardly rectifying K+ channel in the rat. FEBS Lett 1994, 348: 139–144.CrossRefPubMed Karschin C, Schreibmayer W, Dascal N, Lester H, Davidson N, Karschin A. Distribution and localization of a G protein-coupled inwardly rectifying K+ channel in the rat. FEBS Lett 1994, 348: 139–144.CrossRefPubMed
54.
go back to reference Ponce A, Bueno E, Kentros C, Vega-Saenz de Miera E, Chow A, Hillman D, et al. G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J Neurosci 1996, 16: 1990–2001.PubMed Ponce A, Bueno E, Kentros C, Vega-Saenz de Miera E, Chow A, Hillman D, et al. G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J Neurosci 1996, 16: 1990–2001.PubMed
55.
go back to reference Frere SG, Luthi A. Pacemaker channels in mouse thalamocortical neurones are regulated by distinct pathways of cAMP synthesis. J Physiol 2004, 554: 111–125.PubMedCentralCrossRefPubMed Frere SG, Luthi A. Pacemaker channels in mouse thalamocortical neurones are regulated by distinct pathways of cAMP synthesis. J Physiol 2004, 554: 111–125.PubMedCentralCrossRefPubMed
56.
go back to reference Mao J, Li L, McManus M, Wu J, Cui N, Jiang C. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis. J Biol Chem 2002, 277: 46166–46171.CrossRefPubMed Mao J, Li L, McManus M, Wu J, Cui N, Jiang C. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis. J Biol Chem 2002, 277: 46166–46171.CrossRefPubMed
57.
go back to reference Mao J, Wu J, Chen F, Wang X, Jiang C. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis. J Biol Chem 2003, 278: 7091–7098.CrossRefPubMed Mao J, Wu J, Chen F, Wang X, Jiang C. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis. J Biol Chem 2003, 278: 7091–7098.CrossRefPubMed
58.
go back to reference Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G-proteins, PIP2, and sodium. Cell 2011, 147: 199–208.PubMedCentralCrossRefPubMed Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G-proteins, PIP2, and sodium. Cell 2011, 147: 199–208.PubMedCentralCrossRefPubMed
59.
go back to reference Mark MD, Herlitze S. G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 2000, 267: 5830–5836.CrossRefPubMed Mark MD, Herlitze S. G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 2000, 267: 5830–5836.CrossRefPubMed
60.
go back to reference Andrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986, 234: 1261–1265.CrossRefPubMed Andrade R, Malenka RC, Nicoll RA. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986, 234: 1261–1265.CrossRefPubMed
61.
go back to reference Zhang Y, Suga N. Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J Neurophysiol 1997, 78: 3489–3492.PubMed Zhang Y, Suga N. Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J Neurophysiol 1997, 78: 3489–3492.PubMed
62.
63.
64.
go back to reference Calford MB, Aitkin LM. Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 1983, 3: 2365–2380.PubMed Calford MB, Aitkin LM. Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 1983, 3: 2365–2380.PubMed
65.
go back to reference Conley M, Kupersmith AC, Diamond IT. The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. Eur J Neurosci 1991, 3: 1089–1103.CrossRefPubMed Conley M, Kupersmith AC, Diamond IT. The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. Eur J Neurosci 1991, 3: 1089–1103.CrossRefPubMed
66.
go back to reference Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, et al. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 2008, 11: 683–692.CrossRefPubMed Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, et al. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 2008, 11: 683–692.CrossRefPubMed
67.
go back to reference Feng S, He Z, Li H, Wang Y. Ca(2+) signaling initiated by canonical transient receptor potential channels in dendritic development. Neurosci Bull 2015, 31: 351–356.CrossRefPubMed Feng S, He Z, Li H, Wang Y. Ca(2+) signaling initiated by canonical transient receptor potential channels in dendritic development. Neurosci Bull 2015, 31: 351–356.CrossRefPubMed
68.
go back to reference He J, Hu B. Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 2002, 88: 2152–2156.PubMed He J, Hu B. Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 2002, 88: 2152–2156.PubMed
69.
go back to reference Swadlow HA, Gusev AG. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 2001, 4: 402–408.CrossRefPubMed Swadlow HA, Gusev AG. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 2001, 4: 402–408.CrossRefPubMed
70.
go back to reference Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 2001, 24: 122–126.CrossRefPubMed Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 2001, 24: 122–126.CrossRefPubMed
71.
go back to reference Fu ZY, Mei HX, Cheng L, Bai J, Tang J, Jen PH, et al. Local neuronal circuits that may shape the discharge patterns of inferior collicular neurons. Neurosci Bull 2013, 29: 541–552.CrossRefPubMed Fu ZY, Mei HX, Cheng L, Bai J, Tang J, Jen PH, et al. Local neuronal circuits that may shape the discharge patterns of inferior collicular neurons. Neurosci Bull 2013, 29: 541–552.CrossRefPubMed
72.
go back to reference Guido W, Lu SM, Sherman SM. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol 1992, 68: 2199–2211.PubMed Guido W, Lu SM, Sherman SM. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol 1992, 68: 2199–2211.PubMed
73.
go back to reference Cotillon-Williams N, Huetz C, Hennevin E, Edeline JM. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. J Neurophysiol 2008, 99: 1137–1151.CrossRefPubMed Cotillon-Williams N, Huetz C, Hennevin E, Edeline JM. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. J Neurophysiol 2008, 99: 1137–1151.CrossRefPubMed
74.
go back to reference Massaux A, Dutrieux G, Cotillon-Williams N, Manunta Y, Edeline JM. Auditory thalamus bursts in anesthetized and non-anesthetized states: contribution to functional properties. J Neurophysiol 2004, 91: 2117–2134.CrossRefPubMed Massaux A, Dutrieux G, Cotillon-Williams N, Manunta Y, Edeline JM. Auditory thalamus bursts in anesthetized and non-anesthetized states: contribution to functional properties. J Neurophysiol 2004, 91: 2117–2134.CrossRefPubMed
75.
go back to reference He J. Slow oscillation in non-lemniscal auditory thalamus. J. Neurosci. 2003, 23: 8281–8290.PubMed He J. Slow oscillation in non-lemniscal auditory thalamus. J. Neurosci. 2003, 23: 8281–8290.PubMed
76.
go back to reference Wallenstein GV. Simulation of GABAB-receptor-mediated K+ current in thalamocortical relay neurons: tonic firing, bursting, and oscillations. Biol Cybern 1994, 71: 271–280.CrossRefPubMed Wallenstein GV. Simulation of GABAB-receptor-mediated K+ current in thalamocortical relay neurons: tonic firing, bursting, and oscillations. Biol Cybern 1994, 71: 271–280.CrossRefPubMed
77.
go back to reference Takahashi H, Nakao M, Kaga K. Cortical mapping of auditory-evoked offset responses in rats. Neuroreport 2004, 15: 1565–1569.CrossRefPubMed Takahashi H, Nakao M, Kaga K. Cortical mapping of auditory-evoked offset responses in rats. Neuroreport 2004, 15: 1565–1569.CrossRefPubMed
78.
go back to reference Phillips DP, Hall SE, Boehnke SE. Central auditory onset responses, and temporal asymmetries in auditory perception. Hear Res 2002, 167: 192–205.CrossRefPubMed Phillips DP, Hall SE, Boehnke SE. Central auditory onset responses, and temporal asymmetries in auditory perception. Hear Res 2002, 167: 192–205.CrossRefPubMed
79.
go back to reference Aitkin LM, Prain SM. Medial geniculate body: unit responses in the awake cat. J Neurophysiol 1974, 37: 512–521.PubMed Aitkin LM, Prain SM. Medial geniculate body: unit responses in the awake cat. J Neurophysiol 1974, 37: 512–521.PubMed
80.
go back to reference He J. On and off pathways segregated at the auditory thalamus of the guinea pig. J Neurosci 2001, 21: 8672–8679.PubMed He J. On and off pathways segregated at the auditory thalamus of the guinea pig. J Neurosci 2001, 21: 8672–8679.PubMed
81.
go back to reference Toronchuk JM, Stumpf E, Cynader MS. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp. Brain Res. 1992, 88: 169–180.CrossRefPubMed Toronchuk JM, Stumpf E, Cynader MS. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp. Brain Res. 1992, 88: 169–180.CrossRefPubMed
82.
go back to reference He J, Hashikawa T, Ojima H, Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 1997, 17: 2615–2625.PubMed He J, Hashikawa T, Ojima H, Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 1997, 17: 2615–2625.PubMed
Metadata
Title
Characterization of Rebound Depolarization in Neurons of the Rat Medial Geniculate Body In Vitro
Authors
Xin-Xing Wang
Yan Jin
Hui Sun
Chunlei Ma
Jinsheng Zhang
Ming Wang
Lin Chen
Publication date
01-02-2016
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 1/2016
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-015-0006-5

Other articles of this Issue 1/2016

Neuroscience Bulletin 1/2016 Go to the issue