Skip to main content
Top
Published in: European Spine Journal 9/2018

01-09-2018 | Original Article

Characteristic morphological patterns within adolescent idiopathic scoliosis may be explained by mechanical loading

Authors: Benedikt Schlager, Florian Krump, Julius Boettinger, Frank Niemeyer, Michael Ruf, Sebastian Kleiner, Meinrad Beer, Hans-Joachim Wilke

Published in: European Spine Journal | Issue 9/2018

Login to get access

Abstract

Purpose

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine which exhibits morphological changes during growth. The goal of this study was to identify morphological patterns that could be explained by different loading patterns for AIS.

Methods

Computed tomography data of 21 patients with diagnosed AIS and 48 patients without any visual spinal abnormalities were collected prospectively. The bony structures were reconstructed, and landmarks were placed on characteristic morphological points on the spine. Multiple morphological parameters were calculated based on the distances between the landmarks. The intra- and inter-observer variability for each parameter was estimated. Differences between healthy and scoliotic spines were statistically analysed using the t test for unpaired data, with a significance level of α = 0.01.

Results

Within the healthy group, an out-of-plane rotation of the vertebrae in the transverse plane was measured (2.6° ± 4.1° at T2). Relating the length of the spinal curvature to the T1–S1 height of the spine revealed that scoliotic spines were significantly longer. However, the endplate area in the AIS group was significantly smaller once compared to the curvature length. The relation between the left and right pedicle areas varied between 2.5 ± 0.79 and 0.4 ± 0.19, while the ratio of the facet articular surfaces varied within 2.3 ± 0.5 and 0.5 ± 0.2.

Conclusions

This study identified a certain morphological pattern along the spine, which reveals a distinct load path prevalent within AIS. The data suggested that the spine adapts to the asymmetric load conditions and the spine is not deformed by asymmetric growth disturbance.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wolff J (1893) Das Gesetz der transformation der Knochen. DMW—Dtsch Medizinische Wochenschrift 19:1222–1224CrossRef Wolff J (1893) Das Gesetz der transformation der Knochen. DMW—Dtsch Medizinische Wochenschrift 19:1222–1224CrossRef
2.
go back to reference Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22(3):231–244CrossRefPubMed Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22(3):231–244CrossRefPubMed
3.
go back to reference Turner CH (1992) Functional determinants of bone structure: beyond Wolff’s law of bone transformation. Bone 13(6):403–409CrossRefPubMed Turner CH (1992) Functional determinants of bone structure: beyond Wolff’s law of bone transformation. Bone 13(6):403–409CrossRefPubMed
4.
go back to reference Wilke H-J, Mathes B, Midderhoff S, Graf N (2015) Development of a scoliotic spine model for biomechanical in vitro studies. Clin Biomech 30(2):182–187CrossRef Wilke H-J, Mathes B, Midderhoff S, Graf N (2015) Development of a scoliotic spine model for biomechanical in vitro studies. Clin Biomech 30(2):182–187CrossRef
5.
go back to reference Niemeyer F, Wilke H-J, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine–a probabilistic finite element analysis. J Biomech 45(8):1414–1423CrossRefPubMed Niemeyer F, Wilke H-J, Schmidt H (2012) Geometry strongly influences the response of numerical models of the lumbar spine–a probabilistic finite element analysis. J Biomech 45(8):1414–1423CrossRefPubMed
6.
go back to reference Thong W, Parent S, Wu J, Aubin CE, Labelle H, Kadoury S (2016) Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur Spine J 25(10):3104–3113CrossRefPubMed Thong W, Parent S, Wu J, Aubin CE, Labelle H, Kadoury S (2016) Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur Spine J 25(10):3104–3113CrossRefPubMed
7.
go back to reference Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine (Phila Pa 1976) 29(20):E455–E462CrossRef Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine (Phila Pa 1976) 29(20):E455–E462CrossRef
8.
go back to reference Scherrer SA, Begon M, Leardini A, Coillard C, Rivard CH, Allard P (2013) Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE 8(8):1–7CrossRef Scherrer SA, Begon M, Leardini A, Coillard C, Rivard CH, Allard P (2013) Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE 8(8):1–7CrossRef
9.
go back to reference Modi HN, Suh SW, Song HR, Yang JH, Kim HJ, Modi CH (2008) Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis—a cross sectional study in 150 patients. Scoliosis 3(1):11CrossRefPubMedPubMedCentral Modi HN, Suh SW, Song HR, Yang JH, Kim HJ, Modi CH (2008) Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis—a cross sectional study in 150 patients. Scoliosis 3(1):11CrossRefPubMedPubMedCentral
10.
go back to reference Schlösser TPC, van Stralen M, Brink RC, Chu WCW, Lam T-P, Vincken KL, Castelein RM, Cheng JCY (2014) Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 39(19):E1159–E1166CrossRef Schlösser TPC, van Stralen M, Brink RC, Chu WCW, Lam T-P, Vincken KL, Castelein RM, Cheng JCY (2014) Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 39(19):E1159–E1166CrossRef
11.
go back to reference Little JP, Pearcy MJ, Izatt MT, Boom K, Labrom RD, Askin GN, Adam CJ (2015) Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: a magnetic resonance imaging study. Clin Biomech (Bristol, Avon) 32(2016):220–228 Little JP, Pearcy MJ, Izatt MT, Boom K, Labrom RD, Askin GN, Adam CJ (2015) Understanding how axial loads on the spine influence segmental biomechanics for idiopathic scoliosis patients: a magnetic resonance imaging study. Clin Biomech (Bristol, Avon) 32(2016):220–228
12.
go back to reference Roaf R (1958) Rotation movements of the spine with special reference to scoliosis. J Bone Joint Surg Br 40-B(2):312–332CrossRefPubMed Roaf R (1958) Rotation movements of the spine with special reference to scoliosis. J Bone Joint Surg Br 40-B(2):312–332CrossRefPubMed
14.
go back to reference Lowe T, Edgar M, Margulies J (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg 82(8):1157CrossRefPubMed Lowe T, Edgar M, Margulies J (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg 82(8):1157CrossRefPubMed
15.
go back to reference Davis CM, Grant CA, Pearcy MJ, Askin GN, Labrom RD, Izatt MT, Adam CJ, Little JP (2017) Is there asymmetry between the concave and convex pedicles in adolescent idiopathic scoliosis? A CT investigation. Clin Orthop Relat Res 475(3):884–893CrossRefPubMed Davis CM, Grant CA, Pearcy MJ, Askin GN, Labrom RD, Izatt MT, Adam CJ, Little JP (2017) Is there asymmetry between the concave and convex pedicles in adolescent idiopathic scoliosis? A CT investigation. Clin Orthop Relat Res 475(3):884–893CrossRefPubMed
16.
go back to reference Parent S, Labelle H, Skalli W, Latimer B, de Guise J (2002) Morphometric analysis of anatomic scoliotic specimens. Spine (Phila Pa 1976) 27(21):2305–2311CrossRef Parent S, Labelle H, Skalli W, Latimer B, de Guise J (2002) Morphometric analysis of anatomic scoliotic specimens. Spine (Phila Pa 1976) 27(21):2305–2311CrossRef
17.
go back to reference Tanabe H, Aota Y, Nakamura N, Saito T (2017) A histomorphometric study of the cancellous spinal process bone in adolescent idiopathic scoliosis. Eur Spine J 26(6):1600–1609CrossRefPubMed Tanabe H, Aota Y, Nakamura N, Saito T (2017) A histomorphometric study of the cancellous spinal process bone in adolescent idiopathic scoliosis. Eur Spine J 26(6):1600–1609CrossRefPubMed
18.
go back to reference Wang ZW, Lee WYW, Lam TP, Yip BHK, Yu FWP, Yu WS, Zhu F, Ng BKW, Qiu Y, Cheng JCY (2017) Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis. Eur Spine J 26(6):1586–1594CrossRefPubMed Wang ZW, Lee WYW, Lam TP, Yip BHK, Yu FWP, Yu WS, Zhu F, Ng BKW, Qiu Y, Cheng JCY (2017) Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis. Eur Spine J 26(6):1586–1594CrossRefPubMed
19.
go back to reference Porter R (2000) Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976) 25(11):1360–1366CrossRef Porter R (2000) Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976) 25(11):1360–1366CrossRef
20.
go back to reference Chu WC, Yeung HY, Chau WW, Lam WW, Ng BK, Lam TP, Lee KM, Cheng JC (2006) Changes in vertebral neural arch morphometry and functional tethering of spinal cord in adolescent idiopathic scoliosis–study with multi-planar reformat magnetic resonance imaging. Stud Health Technol Inform 123(1):27–33PubMed Chu WC, Yeung HY, Chau WW, Lam WW, Ng BK, Lam TP, Lee KM, Cheng JC (2006) Changes in vertebral neural arch morphometry and functional tethering of spinal cord in adolescent idiopathic scoliosis–study with multi-planar reformat magnetic resonance imaging. Stud Health Technol Inform 123(1):27–33PubMed
21.
go back to reference Guo X, Chau WW, Chan YL, Cheng JCY (2003) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J Bone Joint Surg Br 85(7):1026–1031CrossRefPubMed Guo X, Chau WW, Chan YL, Cheng JCY (2003) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J Bone Joint Surg Br 85(7):1026–1031CrossRefPubMed
22.
go back to reference Roth M (1981) Idiopathic scoliosis from the point of view of the neuroradiologist. Neuroradiology 21(3):133–138PubMed Roth M (1981) Idiopathic scoliosis from the point of view of the neuroradiologist. Neuroradiology 21(3):133–138PubMed
23.
go back to reference Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef
24.
go back to reference Kouwenhoven J-WM, Bartels LW, Vincken KL, Viergever MA, Verbout AJ, Delhaas T, Castelein RM (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine (Phila Pa 1976) 32(10):1123–1128CrossRef Kouwenhoven J-WM, Bartels LW, Vincken KL, Viergever MA, Verbout AJ, Delhaas T, Castelein RM (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine (Phila Pa 1976) 32(10):1123–1128CrossRef
25.
go back to reference Newell N, Grant CA, Keenan BE, Izatt MT, Pearcy MJ, Adam CJ (2016) Quantifying progressive anterior overgrowth in the thoracic vertebrae of adolescent idiopathic scoliosis patients: a sequential magnetic resonance imaging study. Spine J 41(7):E382–E387CrossRef Newell N, Grant CA, Keenan BE, Izatt MT, Pearcy MJ, Adam CJ (2016) Quantifying progressive anterior overgrowth in the thoracic vertebrae of adolescent idiopathic scoliosis patients: a sequential magnetic resonance imaging study. Spine J 41(7):E382–E387CrossRef
26.
go back to reference Brink RC, Schlösser TPC, Colo D, Vavruch L, Van Stralen M, Vincken KL, Malmqvist M, Kruyt MC, Tropp H, Castelein RM (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine (Phila Pa 1976) 42:818–822CrossRef Brink RC, Schlösser TPC, Colo D, Vavruch L, Van Stralen M, Vincken KL, Malmqvist M, Kruyt MC, Tropp H, Castelein RM (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine (Phila Pa 1976) 42:818–822CrossRef
27.
go back to reference Volkmann R (1869) Die Krankheiten der Bewegungsorgane. Handb der Allg und Spez Chir Bd II, Abt 1:350–351 Volkmann R (1869) Die Krankheiten der Bewegungsorgane. Handb der Allg und Spez Chir Bd II, Abt 1:350–351
28.
go back to reference Hueter C (1863) Anatomische Studien an den Extremit{ä}tengelenken Neugeborener und Erwachsener. Arch f{ü}r Pathol Anat und Physiol und f{ü}r Klin Med 26(5):484–519 Hueter C (1863) Anatomische Studien an den Extremit{ä}tengelenken Neugeborener und Erwachsener. Arch f{ü}r Pathol Anat und Physiol und f{ü}r Klin Med 26(5):484–519
29.
go back to reference Stokes IA, Spence H, Aronsson DD, Kilmer N (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine (Phila Pa 1976) 21(10):1162–1167CrossRef Stokes IA, Spence H, Aronsson DD, Kilmer N (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine (Phila Pa 1976) 21(10):1162–1167CrossRef
30.
go back to reference Stokes IAF (2002) Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact 2(3):277–280PubMed Stokes IAF (2002) Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact 2(3):277–280PubMed
31.
go back to reference Schlager B, Niemeyer F, Galbusera F, Wilke HJ (2018) Asymmetrical intrapleural pressure distribution: a cause for scoliosis? A computational analysis. Eur J Appl Physiol (in press) Schlager B, Niemeyer F, Galbusera F, Wilke HJ (2018) Asymmetrical intrapleural pressure distribution: a cause for scoliosis? A computational analysis. Eur J Appl Physiol (in press)
Metadata
Title
Characteristic morphological patterns within adolescent idiopathic scoliosis may be explained by mechanical loading
Authors
Benedikt Schlager
Florian Krump
Julius Boettinger
Frank Niemeyer
Michael Ruf
Sebastian Kleiner
Meinrad Beer
Hans-Joachim Wilke
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2018
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-018-5622-0

Other articles of this Issue 9/2018

European Spine Journal 9/2018 Go to the issue

Announcements

Announcements