Skip to main content
Top
Published in: European Radiology Experimental 1/2018

Open Access 01-12-2018 | Original article

Changes in total choline concentration in the breast of healthy fertile young women in relation to menstrual cycle or use of oral contraceptives: a 3-T 1H-MRS study

Authors: Giovanni Di Leo, Ileana Ioan, Maria Laura Luciani, Cecilia Midulla, Franca Podo, Francesco Sardanelli, Federica Pediconi

Published in: European Radiology Experimental | Issue 1/2018

Login to get access

Abstract

Background

To evaluate changes in total choline (tCho) absolute concentration ([tCho]) in the breast of healthy fertile women in relation to menstrual cycle (MC) or use of oral contraceptives (OC).

Methods

After institutional review board approval, we prospectively evaluated 40 healthy fertile volunteers: 20 with physiological MC, aged 28 ± 3 years (mean ± standard deviation; nOC group); 20 using OC, aged 26 ± 3 years (OC group). Hormonal assays and water-suppressed single-voxel 3-T proton magnetic resonance spectroscopy (1H-MRS) were performed on MC days 7, 14, and 21 in the nOC group and only on MC day 14 in the OC group. [tCho] was measured versus an external phantom. Mann-Whitney U test and Spearman coefficient were used; data are given as median and interquartile interval.

Results

All spectra had good quality. In the nOC group, [tCho] (mM) did not change significantly during MC: 0.8 (0.3–2.4) on day 7, 0.9 (0.4–1.2) on day 14, and 0.4 (0.2–0.8) on day 21 (p = 0.963). In the OC group, [tCho] was 0.7 (0.2–1.7) mM. The between-groups difference was not significant on all days (p ≥ 0.411). All hormones except prolactin changed during MC (p ≤ 0.024). In the OC group, [tCho] showed a borderline correlation with estradiol (r = 0.458, p = 0.056), but no correlation with other hormones (p ≥ 0.128). In the nOC group, [tCho] negatively correlated with prolactin (r = -0.587, p = 0.006) on day 7; positive correlation was found with estradiol on day 14 (r = 0.679, p = 0.001).

Conclusions

A tCho peak can be detected in the normal mammary gland using 3-T 1H-MRS. The [tCho] in healthy volunteers was 0.4–0.9 mM, constant over the MC and independent of OC use.
Literature
1.
go back to reference Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA (2004) Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging 19:68–75 Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA (2004) Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging 19:68–75
2.
go back to reference Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236:465–475CrossRef Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236:465–475CrossRef
3.
go back to reference Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: Preliminary study. Radiology 239:686–692CrossRef Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: Preliminary study. Radiology 239:686–692CrossRef
4.
go back to reference Sardanelli F, Fausto A, Podo F (2008) MR spectroscopy of the breast. Radiol Med 113:56–64CrossRef Sardanelli F, Fausto A, Podo F (2008) MR spectroscopy of the breast. Radiol Med 113:56–64CrossRef
5.
go back to reference Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 192:1608–1617 Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 192:1608–1617
6.
go back to reference Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst 94:1197–1203CrossRef Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst 94:1197–1203CrossRef
7.
go back to reference Mountford C, Ramadan S, Stanwell P, Malycha P (2009) Proton MRS of the breast in the clinical setting. NMR Biomed 22:54–64CrossRef Mountford C, Ramadan S, Stanwell P, Malycha P (2009) Proton MRS of the breast in the clinical setting. NMR Biomed 22:54–64CrossRef
8.
go back to reference Baltzer PA, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T – systematic review and meta-analysis. Radiology 267:735–746CrossRef Baltzer PA, Dietzel M (2013) Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T – systematic review and meta-analysis. Radiology 267:735–746CrossRef
9.
go back to reference Cen D, Xu L (2014) Differential diagnosis between malignant and benign breast lesions using single-voxel proton MRS: a meta-analysis. J Cancer Res Clin Oncol 140:993–1001CrossRef Cen D, Xu L (2014) Differential diagnosis between malignant and benign breast lesions using single-voxel proton MRS: a meta-analysis. J Cancer Res Clin Oncol 140:993–1001CrossRef
10.
go back to reference Tan J, Xu L, Yao W, Wan Y, Zhou S, Xin SX (2015) In vivo post-contrast 1H-MRS evaluation of malignant and benign breast lesions: a meta-analysis. Tumour Biol 36:345–352 Tan J, Xu L, Yao W, Wan Y, Zhou S, Xin SX (2015) In vivo post-contrast 1H-MRS evaluation of malignant and benign breast lesions: a meta-analysis. Tumour Biol 36:345–352
11.
go back to reference Wang X, Wang XJ, Song HS, Chen LH (2015) 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis. Med Oncol 32:160CrossRef Wang X, Wang XJ, Song HS, Chen LH (2015) 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis. Med Oncol 32:160CrossRef
12.
go back to reference Sardanelli F, Carbonaro LA, Montemezzi S, Cavedon C, Trimboli RM (2016) Clinical breast MR using MRS or DWI: who is the winner? Front Oncol 6:217 Sardanelli F, Carbonaro LA, Montemezzi S, Cavedon C, Trimboli RM (2016) Clinical breast MR using MRS or DWI: who is the winner? Front Oncol 6:217
13.
go back to reference Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043CrossRef Stanwell P, Gluch L, Clark D et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043CrossRef
14.
go back to reference Baek HM, Chen JH, Nie K et al (2009) Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 251:653–662CrossRef Baek HM, Chen JH, Nie K et al (2009) Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 251:653–662CrossRef
15.
go back to reference Aboagye EO, Bhujwalla ZM (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 59:80–84PubMed Aboagye EO, Bhujwalla ZM (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 59:80–84PubMed
16.
go back to reference Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty KS Jr (1981) The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 104:23–24 Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty KS Jr (1981) The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol 104:23–24
17.
go back to reference Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318CrossRef Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318CrossRef
18.
go back to reference Jung Y, Jeong SK, Kang DK, Moon Y, Kim TH (2018) Quantitative analysis of background parenchymal enhancement in whole breast on MRI: influence of menstrual cycle and comparison with a qualitative analysis. Eur J Radiol 103:84–89 Jung Y, Jeong SK, Kang DK, Moon Y, Kim TH (2018) Quantitative analysis of background parenchymal enhancement in whole breast on MRI: influence of menstrual cycle and comparison with a qualitative analysis. Eur J Radiol 103:84–89
19.
go back to reference Scaranelo AM, Carrillo MC, Fleming R, Jacks LM, Kulkarni SR, Crystal P (2013) Pilot study of quantitative analysis of background enhancement on breast MR images: association with menstrual cycle and mammographic breast density. Radiology 267:692–700 Scaranelo AM, Carrillo MC, Fleming R, Jacks LM, Kulkarni SR, Crystal P (2013) Pilot study of quantitative analysis of background enhancement on breast MR images: association with menstrual cycle and mammographic breast density. Radiology 267:692–700
20.
go back to reference Clendenen TV, Kim S, Moy L et al (2013) Magnetic resonance imaging (MRI) of hormone-induced breast changes in young premenopausal women. Magn Reson Imaging 31:1–9CrossRef Clendenen TV, Kim S, Moy L et al (2013) Magnetic resonance imaging (MRI) of hormone-induced breast changes in young premenopausal women. Magn Reson Imaging 31:1–9CrossRef
21.
go back to reference Goldsmith SJ (1975) Radioimmunoassay: review of basic principles. Semin Nucl Med 5:125–152CrossRef Goldsmith SJ (1975) Radioimmunoassay: review of basic principles. Semin Nucl Med 5:125–152CrossRef
22.
go back to reference Bolan PJ (2013) Magnetic resonance spectroscopy of the breast: current status. Magn Reson Imaging Clin N Am 21:625–639CrossRef Bolan PJ (2013) Magnetic resonance spectroscopy of the breast: current status. Magn Reson Imaging Clin N Am 21:625–639CrossRef
23.
go back to reference Bartella L, Huang W (2007) Proton (1H) MR spectroscopy of the breast. Radiographics 27:S241–S252CrossRef Bartella L, Huang W (2007) Proton (1H) MR spectroscopy of the breast. Radiographics 27:S241–S252CrossRef
24.
go back to reference Dorrius MD, Pijnappel RM, Jansen-van der Weide MC et al (2011) Determination of choline concentration in breast lesions: quantitative multivoxel proton MR spectroscopy as a promising noninvasive assessment tool to exclude benign lesions. Radiology 259:695–703CrossRef Dorrius MD, Pijnappel RM, Jansen-van der Weide MC et al (2011) Determination of choline concentration in breast lesions: quantitative multivoxel proton MR spectroscopy as a promising noninvasive assessment tool to exclude benign lesions. Radiology 259:695–703CrossRef
25.
go back to reference Haddadin IS, McIntosh A, Meisamy S et al (2009) Metabolite quantification and high-field MRS in breast cancer. NMR Biomed 22:65–76CrossRef Haddadin IS, McIntosh A, Meisamy S et al (2009) Metabolite quantification and high-field MRS in breast cancer. NMR Biomed 22:65–76CrossRef
Metadata
Title
Changes in total choline concentration in the breast of healthy fertile young women in relation to menstrual cycle or use of oral contraceptives: a 3-T 1H-MRS study
Authors
Giovanni Di Leo
Ileana Ioan
Maria Laura Luciani
Cecilia Midulla
Franca Podo
Francesco Sardanelli
Federica Pediconi
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
European Radiology Experimental / Issue 1/2018
Electronic ISSN: 2509-9280
DOI
https://doi.org/10.1186/s41747-018-0075-0

Other articles of this Issue 1/2018

European Radiology Experimental 1/2018 Go to the issue