Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Review

Challenges of applying multicellular tumor spheroids in preclinical phase

Authors: Se Jik Han, Sangwoo Kwon, Kyung Sook Kim

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

The three-dimensional (3D) multicellular tumor spheroids (MCTs) model is becoming an essential tool in cancer research as it expresses an intermediate complexity between 2D monolayer models and in vivo solid tumors. MCTs closely resemble in vivo solid tumors in many aspects, such as the heterogeneous architecture, internal gradients of signaling factors, nutrients, and oxygenation. MCTs have growth kinetics similar to those of in vivo tumors, and the cells in spheroid mimic the physical interaction of the tumors, such as cell-to-cell and cell-to-extracellular matrix interactions. These similarities provide great potential for studying the biological properties of tumors and a promising platform for drug screening and therapeutic efficacy evaluation. However, MCTs are not well adopted as preclinical tools for studying tumor behavior and therapeutic efficacy up to now. In this review, we addressed the challenges with MCTs application and discussed various efforts to overcome the challenges.
Literature
1.
go back to reference Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.PubMedCrossRef Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.PubMedCrossRef
2.
go back to reference Maddaly R, Paramesh V, Kaviya SR, Anuradha E, Paul Solomon FD. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26.CrossRef Maddaly R, Paramesh V, Kaviya SR, Anuradha E, Paul Solomon FD. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26.CrossRef
3.
go back to reference Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: Spheroids—old hat or new challenge? Int J Radiat Biol. 2007;83(11):849–71.PubMedCrossRef Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: Spheroids—old hat or new challenge? Int J Radiat Biol. 2007;83(11):849–71.PubMedCrossRef
4.
go back to reference Froehlich K, Haeger JD, Heger J, Pastuschek J, Photini SM, Yan Y, et al. Generation of multicellular breast cancer tumor spheroids: Comparison of different protocols. J Mammary Gland Biol Neoplasia. 2016;21(3–4):89–98.PubMedCrossRef Froehlich K, Haeger JD, Heger J, Pastuschek J, Photini SM, Yan Y, et al. Generation of multicellular breast cancer tumor spheroids: Comparison of different protocols. J Mammary Gland Biol Neoplasia. 2016;21(3–4):89–98.PubMedCrossRef
5.
go back to reference Ricci C, Moroni L, Danti S. Cancer tissue engineering: new perspectives in understanding the biology of solid tumors: a critical review. Tissue Eng. 2013;1:4. Ricci C, Moroni L, Danti S. Cancer tissue engineering: new perspectives in understanding the biology of solid tumors: a critical review. Tissue Eng. 2013;1:4.
6.
go back to reference Tung YC, Hsiao AY, Allen SG, Torisawa YS, Mitchell HM, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–8.CrossRefPubMed Tung YC, Hsiao AY, Allen SG, Torisawa YS, Mitchell HM, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136(3):473–8.CrossRefPubMed
7.
go back to reference Wu LY, Carlo DD, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008;10:197–202.PubMedCrossRef Wu LY, Carlo DD, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008;10:197–202.PubMedCrossRef
8.
go back to reference Lee SW, Hong S, Jung B, Jeong SY, Byeon JH, Jeong GS, et al. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Biotechnol Bioeng. 2019;116:3041–52.PubMedCrossRef Lee SW, Hong S, Jung B, Jeong SY, Byeon JH, Jeong GS, et al. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Biotechnol Bioeng. 2019;116:3041–52.PubMedCrossRef
9.
go back to reference Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, et al. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip. 2019;19(17):2822–33.PubMedCrossRef Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, et al. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip. 2019;19(17):2822–33.PubMedCrossRef
10.
go back to reference Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Xavier I, et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 2019;95:357–70.PubMedPubMedCentralCrossRef Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Xavier I, et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 2019;95:357–70.PubMedPubMedCentralCrossRef
11.
go back to reference Thakuri PS, Gupta M, Plaster M, Tavana H. Quantitative size-based analysis of tumor spheroids and responses to therapeutics. Assay Drug Dev Technol. 2019;17(3):140–9.PubMedCrossRef Thakuri PS, Gupta M, Plaster M, Tavana H. Quantitative size-based analysis of tumor spheroids and responses to therapeutics. Assay Drug Dev Technol. 2019;17(3):140–9.PubMedCrossRef
12.
go back to reference Costa EC, Moreira AF, Melo-Diogo D, Gaspar VM, Carvalho MP, Close Ilídio JC, et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv. 2016;34(8):1427–41.PubMedCrossRef Costa EC, Moreira AF, Melo-Diogo D, Gaspar VM, Carvalho MP, Close Ilídio JC, et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv. 2016;34(8):1427–41.PubMedCrossRef
13.
go back to reference Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstak MW. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials. 2014;35(7):2264–71.PubMedCrossRef Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstak MW. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials. 2014;35(7):2264–71.PubMedCrossRef
14.
go back to reference Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Simone CR. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010;31(32):8494–506.PubMedCrossRef Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Simone CR. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010;31(32):8494–506.PubMedCrossRef
15.
go back to reference Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials. 2009;30(30):6076–85.PubMedPubMedCentralCrossRef Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials. 2009;30(30):6076–85.PubMedPubMedCentralCrossRef
16.
go back to reference Jayme LH, Sanjeeb KS, Vijayaraghavalu S, Dimitrijevic S, Vasir JK. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5(5):849–62.CrossRef Jayme LH, Sanjeeb KS, Vijayaraghavalu S, Dimitrijevic S, Vasir JK. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5(5):849–62.CrossRef
17.
go back to reference Rodriguesa T, Kundua B, Silva-Correiaa J, Kundu SC, Joaquim M, Rui LR, et al. Emerging tumor spheroids technologies for 3D in vitro cancer modeling. Pharmacol Ther. 2018;184:201–11.CrossRef Rodriguesa T, Kundua B, Silva-Correiaa J, Kundu SC, Joaquim M, Rui LR, et al. Emerging tumor spheroids technologies for 3D in vitro cancer modeling. Pharmacol Ther. 2018;184:201–11.CrossRef
18.
go back to reference Huang BW, Gao JQ. Application of 3D cultured multicellular spheroid tumor models in tumor targeted drug delivery system research. J Control Release. 2018;270:246–59.PubMedCrossRef Huang BW, Gao JQ. Application of 3D cultured multicellular spheroid tumor models in tumor targeted drug delivery system research. J Control Release. 2018;270:246–59.PubMedCrossRef
19.
go back to reference Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32.PubMedCrossRef Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32.PubMedCrossRef
20.
go back to reference Olive PL, Banath JP, Evans HH. Cell killing and DNA damage by etoposide in Chinese hamster V79 monolayers and spheroids: influence of growth kinetics, growth environment and DNA packaging. Br J Cancer. 1993;67:522–30.PubMedPubMedCentralCrossRef Olive PL, Banath JP, Evans HH. Cell killing and DNA damage by etoposide in Chinese hamster V79 monolayers and spheroids: influence of growth kinetics, growth environment and DNA packaging. Br J Cancer. 1993;67:522–30.PubMedPubMedCentralCrossRef
21.
go back to reference Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA. 1993;90:3294–8.CrossRefPubMedPubMedCentral Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA. 1993;90:3294–8.CrossRefPubMedPubMedCentral
22.
go back to reference Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31(6):1403–13.PubMed Ivascu A, Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31(6):1403–13.PubMed
23.
go back to reference Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci. 2020;8:1855–64.PubMedCrossRef Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci. 2020;8:1855–64.PubMedCrossRef
24.
go back to reference Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer. 2019;19:402.PubMedPubMedCentralCrossRef Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer. 2019;19:402.PubMedPubMedCentralCrossRef
25.
go back to reference Singh MS, Goldsmith M, Thakur K, Chatterjee S, Landesman-Milo D, Tally L, et al. An ovarian spheroid-based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale. 2020;12(3):1894–903.PubMedCrossRef Singh MS, Goldsmith M, Thakur K, Chatterjee S, Landesman-Milo D, Tally L, et al. An ovarian spheroid-based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale. 2020;12(3):1894–903.PubMedCrossRef
26.
go back to reference Seungil K, Sarah C, Ren XS, Nolan U, Natasha H, Emma JF, et al. Comparison of cell and organoid-level analysis of patient-derived 3D organoids to evaluate tumor cell growth dynamics and drug response. SLAS Discov. 2020;25(7):744–54.CrossRef Seungil K, Sarah C, Ren XS, Nolan U, Natasha H, Emma JF, et al. Comparison of cell and organoid-level analysis of patient-derived 3D organoids to evaluate tumor cell growth dynamics and drug response. SLAS Discov. 2020;25(7):744–54.CrossRef
27.
go back to reference Zarema G, Aleksei P, Catrin R, Albert R, Valeriya S. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers. 2020;12:2727.CrossRef Zarema G, Aleksei P, Catrin R, Albert R, Valeriya S. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers. 2020;12:2727.CrossRef
28.
go back to reference Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Laura AM, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. Journal for ImmunoTherapy of Cancer. 2019;7:74.PubMedPubMedCentralCrossRef Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Laura AM, et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. Journal for ImmunoTherapy of Cancer. 2019;7:74.PubMedPubMedCentralCrossRef
29.
go back to reference Rodríguez CE, Moverer LM, Reidel SI, Marino L, de Kier J, Maria AJ, et al. Cytotoxic effect of trastuzumab on macrophage-infiltrated human mammary tumor spheroids. Cancer Res. 2012;72:2881.CrossRef Rodríguez CE, Moverer LM, Reidel SI, Marino L, de Kier J, Maria AJ, et al. Cytotoxic effect of trastuzumab on macrophage-infiltrated human mammary tumor spheroids. Cancer Res. 2012;72:2881.CrossRef
30.
go back to reference Seyfoori A, Samiei E, Jalili N, Godau B, Rahmanian M, Farahmand L, et al. Self-filling microwell arrays (SFMAs) for tumor spheroid formation. Lab Chip. 2016;18(22):3516–28.CrossRef Seyfoori A, Samiei E, Jalili N, Godau B, Rahmanian M, Farahmand L, et al. Self-filling microwell arrays (SFMAs) for tumor spheroid formation. Lab Chip. 2016;18(22):3516–28.CrossRef
31.
go back to reference McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Helen T, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res. 2012;18:3100–11.PubMedPubMedCentralCrossRef McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Helen T, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res. 2012;18:3100–11.PubMedPubMedCentralCrossRef
32.
go back to reference Michele Z, Michela C, Alice Z, Chiara A, Sara P, Anna T. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020;13:97.CrossRef Michele Z, Michela C, Alice Z, Chiara A, Sara P, Anna T. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020;13:97.CrossRef
33.
go back to reference Smalley KSM, Lioni M, Noma K, Haass NK, Herlyn M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov. 2008;3(1):1–10.PubMedCrossRef Smalley KSM, Lioni M, Noma K, Haass NK, Herlyn M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov. 2008;3(1):1–10.PubMedCrossRef
34.
go back to reference Hongxu L, Martina HS. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small. 2018;14:1702858.CrossRef Hongxu L, Martina HS. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small. 2018;14:1702858.CrossRef
35.
go back to reference Cheng G, Tse J, Jain RK, Lance L, Munn LL. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009;4(2):e4632.PubMedPubMedCentralCrossRef Cheng G, Tse J, Jain RK, Lance L, Munn LL. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009;4(2):e4632.PubMedPubMedCentralCrossRef
36.
go back to reference Ivanov DP, Grabowska AM. Spheroid arrays for high throughput single-cell analysis of spatial patterns and biomarker expression in 3D. Sci Rep. 2017;7:41160.PubMedPubMedCentralCrossRef Ivanov DP, Grabowska AM. Spheroid arrays for high throughput single-cell analysis of spatial patterns and biomarker expression in 3D. Sci Rep. 2017;7:41160.PubMedPubMedCentralCrossRef
37.
go back to reference Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017;14:127.CrossRef Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017;14:127.CrossRef
38.
go back to reference Mayer B, Klement G, Kaneko M, Man S, Jothy S, Rak J, et al. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology. 2001;121(4):839–52.PubMedCrossRef Mayer B, Klement G, Kaneko M, Man S, Jothy S, Rak J, et al. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology. 2001;121(4):839–52.PubMedCrossRef
39.
go back to reference Stadler M, Scherzer M, Walter S, Holzner S, Pudelko K, Angelika R, et al. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells. Sci Rep. 2018;8(1):1151.PubMedPubMedCentralCrossRef Stadler M, Scherzer M, Walter S, Holzner S, Pudelko K, Angelika R, et al. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells. Sci Rep. 2018;8(1):1151.PubMedPubMedCentralCrossRef
40.
go back to reference Schmidt M, Scholz CJ, Polednik C, Roller J. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer. Oncol Rep. 2016;35(4):2431–40.PubMedCrossRef Schmidt M, Scholz CJ, Polednik C, Roller J. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer. Oncol Rep. 2016;35(4):2431–40.PubMedCrossRef
41.
go back to reference Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, William C, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10(1):29.PubMedPubMedCentralCrossRef Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, William C, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10(1):29.PubMedPubMedCentralCrossRef
42.
go back to reference Benien P, Swami A. 3D tumor models: History, advances and future perspectives. Future Oncol. 2014;10(7):1311–27.PubMedCrossRef Benien P, Swami A. 3D tumor models: History, advances and future perspectives. Future Oncol. 2014;10(7):1311–27.PubMedCrossRef
43.
go back to reference Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116(1):206–26.PubMedCrossRef Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116(1):206–26.PubMedCrossRef
44.
go back to reference Saglam-Metiner P, Gulce-Iz S, Biray-Avci C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene. 2019;686:203–12.PubMedCrossRef Saglam-Metiner P, Gulce-Iz S, Biray-Avci C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene. 2019;686:203–12.PubMedCrossRef
45.
go back to reference Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A. Overview of 3D technology applications in plants: phenomic, mapping with robotic systems, architectural designs, plant and animal tissue culture approaches. Anadolu Univ J Sci Technol C Life Sci Biotechnol. 2018;7(2):239–55. Güler B, Sağlam Metiner P, Gülçe İz S, Gürel A. Overview of 3D technology applications in plants: phenomic, mapping with robotic systems, architectural designs, plant and animal tissue culture approaches. Anadolu Univ J Sci Technol C Life Sci Biotechnol. 2018;7(2):239–55.
46.
go back to reference Ahmed, S., Annu, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 2018;116:849–862. Ahmed, S., Annu, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 2018;116:849–862.
47.
go back to reference Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Zahra GM. et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Zahra GM. et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59.
48.
go back to reference Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, et al. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Mater Sci Eng C. 2016;62:215–25.CrossRef Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, et al. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Mater Sci Eng C. 2016;62:215–25.CrossRef
49.
go back to reference Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother. 2017;90:586–97.PubMedCrossRef Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother. 2017;90:586–97.PubMedCrossRef
50.
go back to reference Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.PubMedCrossRef Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.PubMedCrossRef
51.
go back to reference Ma PX, Choi J-W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng Part A. 2001;7:23–33.CrossRef Ma PX, Choi J-W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng Part A. 2001;7:23–33.CrossRef
52.
go back to reference Izquierdo R, Garcia-Giralt N, Rodriguez MT, Cáceres E, García SJ, Ribelles JLG, et al. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. J Biomed Mater Res Part A. 2008;85:25–35.CrossRef Izquierdo R, Garcia-Giralt N, Rodriguez MT, Cáceres E, García SJ, Ribelles JLG, et al. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. J Biomed Mater Res Part A. 2008;85:25–35.CrossRef
53.
go back to reference Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011;6(51):2720. Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011;6(51):2720.
55.
go back to reference Kwak B, Lee Y, Lee J, Lee S, Lim J. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J Control Release. 2018;275:201–7.PubMedCrossRef Kwak B, Lee Y, Lee J, Lee S, Lim J. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J Control Release. 2018;275:201–7.PubMedCrossRef
56.
go back to reference Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7(13):16948–61.PubMedPubMedCentralCrossRef Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7(13):16948–61.PubMedPubMedCentralCrossRef
57.
go back to reference Amaral RLF, Miranda M, Marcato PD, Swiech K. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 2017;8:605.PubMedPubMedCentralCrossRef Amaral RLF, Miranda M, Marcato PD, Swiech K. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 2017;8:605.PubMedPubMedCentralCrossRef
58.
go back to reference Hagemann J, Jacobi C, Hahn M, Schmid V, Welz C, Sabina SZ, et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer Res. 2017;37(5):2201–10.PubMedCrossRef Hagemann J, Jacobi C, Hahn M, Schmid V, Welz C, Sabina SZ, et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer Res. 2017;37(5):2201–10.PubMedCrossRef
59.
go back to reference Dubois C, Dufour R, Daumar P, Aubel C, Szczepaniak C, Christelle B, et al. Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines. Oncotarget. 2017;8(56):95316–31.PubMedPubMedCentralCrossRef Dubois C, Dufour R, Daumar P, Aubel C, Szczepaniak C, Christelle B, et al. Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines. Oncotarget. 2017;8(56):95316–31.PubMedPubMedCentralCrossRef
60.
go back to reference Laura P, Terenzio C, Tiziana B, Annalisa G, Gianluca T, Paola D, et al. MCF7 spheroid development: new insight about spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int J Mol Sci. 2020;21:5400.CrossRef Laura P, Terenzio C, Tiziana B, Annalisa G, Gianluca T, Paola D, et al. MCF7 spheroid development: new insight about spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int J Mol Sci. 2020;21:5400.CrossRef
61.
go back to reference Yuuki S, Norihiko S, Masaki M, Fumio H, Yoko M, Tomio A, et al. Enhanced morphological and functional differences of pancreatic cancer with epithelial or mesenchymal characteristics in 3D culture. Sci Rep. 2019;9:10871.CrossRef Yuuki S, Norihiko S, Masaki M, Fumio H, Yoko M, Tomio A, et al. Enhanced morphological and functional differences of pancreatic cancer with epithelial or mesenchymal characteristics in 3D culture. Sci Rep. 2019;9:10871.CrossRef
62.
go back to reference Hui-li M, Qiao J, Siyuan H, Yan W, Jin Cui T, Dongliang W, et al. Multicellular tumor spheroids as an in vivo–like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol Imaging. 2012;11(6):487–98. Hui-li M, Qiao J, Siyuan H, Yan W, Jin Cui T, Dongliang W, et al. Multicellular tumor spheroids as an in vivo–like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol Imaging. 2012;11(6):487–98.
63.
go back to reference Godugu C, Patel AR, Desai U, Andey T, Sams A, Mandip S. AlgiMatrix based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS ONE. 2013;8(1):e53708.PubMedPubMedCentralCrossRef Godugu C, Patel AR, Desai U, Andey T, Sams A, Mandip S. AlgiMatrix based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS ONE. 2013;8(1):e53708.PubMedPubMedCentralCrossRef
64.
go back to reference Kang J, Lee DW, Hwang HJ, Yeon SE, Lee MY, Kuh HJ. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip. 2016;16(12):2265–76.PubMedCrossRef Kang J, Lee DW, Hwang HJ, Yeon SE, Lee MY, Kuh HJ. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip. 2016;16(12):2265–76.PubMedCrossRef
65.
go back to reference Chignola R, Schenetti A, Andrighetto G, Chiesa E, Foroni R, Sartoris S, et al. Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours. Cell Prolif. 2000;33(4):219–29.PubMedCrossRef Chignola R, Schenetti A, Andrighetto G, Chiesa E, Foroni R, Sartoris S, et al. Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours. Cell Prolif. 2000;33(4):219–29.PubMedCrossRef
66.
go back to reference Koike C, McKee TD, Pluen A, Ramanujan S, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br J Cancer. 2002;86(6):947–53.PubMedPubMedCentralCrossRef Koike C, McKee TD, Pluen A, Ramanujan S, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br J Cancer. 2002;86(6):947–53.PubMedPubMedCentralCrossRef
67.
go back to reference Marusić M, Bajzer Z, Freyer JP, Vuk-Pavlović S. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 1994;27(2):73–94.PubMedCrossRef Marusić M, Bajzer Z, Freyer JP, Vuk-Pavlović S. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 1994;27(2):73–94.PubMedCrossRef
68.
go back to reference Deisboeck TS, Berens ME, Kansal AR, Torquato S, Stemmer-Rachamimov AO, Chiocca EA. Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 2001;34(2):115–34.PubMedCrossRef Deisboeck TS, Berens ME, Kansal AR, Torquato S, Stemmer-Rachamimov AO, Chiocca EA. Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 2001;34(2):115–34.PubMedCrossRef
69.
go back to reference Mirab M, Kang YJ, Majd S. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS ONE. 2019;14(1):e0211078.PubMedPubMedCentralCrossRef Mirab M, Kang YJ, Majd S. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS ONE. 2019;14(1):e0211078.PubMedPubMedCentralCrossRef
70.
go back to reference Ruppen J, Cortes-Dericks L, Marconi E, Karoubi G, Schmid RA, Renwang P, et al. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip. 2014;14(6):1198–205.PubMedCrossRef Ruppen J, Cortes-Dericks L, Marconi E, Karoubi G, Schmid RA, Renwang P, et al. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip. 2014;14(6):1198–205.PubMedCrossRef
71.
go back to reference Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication. 2019;11(4):045013.PubMedCrossRef Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication. 2019;11(4):045013.PubMedCrossRef
72.
go back to reference Gong X, Lin C, Cheng J, Su J, Zhao H, Tianlin L, et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE. 2015;10(6):e0130348.PubMedPubMedCentralCrossRef Gong X, Lin C, Cheng J, Su J, Zhao H, Tianlin L, et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE. 2015;10(6):e0130348.PubMedPubMedCentralCrossRef
73.
go back to reference Leary E, Rhee C, Wilks BT, Morgan JR. Quantitative live-cell confocal imaging of 3D spheroids in a high throughput format. SLAS Technol. 2018;23(3):231–42.PubMedPubMedCentralCrossRef Leary E, Rhee C, Wilks BT, Morgan JR. Quantitative live-cell confocal imaging of 3D spheroids in a high throughput format. SLAS Technol. 2018;23(3):231–42.PubMedPubMedCentralCrossRef
74.
go back to reference Koudan EV, Korneva JV, Karalkin PA, Gladkaya IS, Gryadunova AA, Vladimir AM, et al. The scalable standardized biofabrication of tissue spheroids from different cell types using nonadhesive technology. 3D Print Addit Manufact. 2017;4(1):53–60.CrossRef Koudan EV, Korneva JV, Karalkin PA, Gladkaya IS, Gryadunova AA, Vladimir AM, et al. The scalable standardized biofabrication of tissue spheroids from different cell types using nonadhesive technology. 3D Print Addit Manufact. 2017;4(1):53–60.CrossRef
75.
go back to reference Buffa FM, West C, Byrne K, Moore JV, Nahum AE. Radiation response and cure rate of human colon adenocarcinoma spheroids of different size. Int J Radiat Oncol Biol Phys. 2001;49(4):1109–18.PubMedCrossRef Buffa FM, West C, Byrne K, Moore JV, Nahum AE. Radiation response and cure rate of human colon adenocarcinoma spheroids of different size. Int J Radiat Oncol Biol Phys. 2001;49(4):1109–18.PubMedCrossRef
76.
go back to reference Horas JA, Olguin OR, Rizzotto MG. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects. Phys Med Biol. 2005;50(8):1689–701.PubMedCrossRef Horas JA, Olguin OR, Rizzotto MG. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects. Phys Med Biol. 2005;50(8):1689–701.PubMedCrossRef
77.
go back to reference Weber W, Weber J, Senekowitsch-Schmidtke R. Therapeutic effect of m-[’3’I]- and m-[’251] Iodobenzylguanidine on neuroblastoma multicellular tumor spheroids of different sizes. Cancer Res. 1996;56(23):5428–34.PubMed Weber W, Weber J, Senekowitsch-Schmidtke R. Therapeutic effect of m-[’3’I]- and m-[’251] Iodobenzylguanidine on neuroblastoma multicellular tumor spheroids of different sizes. Cancer Res. 1996;56(23):5428–34.PubMed
78.
go back to reference Silvio D, Nunzia A, Diego C, Robert I, Eleonora T, Raoul AD, et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 2017;8(1):1725–36.CrossRef Silvio D, Nunzia A, Diego C, Robert I, Eleonora T, Raoul AD, et al. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 2017;8(1):1725–36.CrossRef
79.
go back to reference Gencoglu MF, Barney LE, Hall CL, Brooks EA, Schwartz AD, Daniel CC, et al. Comparative study of multicellular tumor spheroid formation methods and implications for drug screening. ACS Biomater Sci Eng. 2018;4(2):410–20.PubMedCrossRef Gencoglu MF, Barney LE, Hall CL, Brooks EA, Schwartz AD, Daniel CC, et al. Comparative study of multicellular tumor spheroid formation methods and implications for drug screening. ACS Biomater Sci Eng. 2018;4(2):410–20.PubMedCrossRef
80.
go back to reference Lee JM, Park DY, Yang L, Kim EJ, Ahrberg CD, Lee KB, et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep. 2018;8(1):17145.PubMedPubMedCentralCrossRef Lee JM, Park DY, Yang L, Kim EJ, Ahrberg CD, Lee KB, et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep. 2018;8(1):17145.PubMedPubMedCentralCrossRef
81.
go back to reference Badea MA, Balas M, Hermenean A, Ciceu A, Herman H, Daniela I, et al. Influence of matrigel on single- and multiple-spheroid cultures in breast cancer research. SLAS Discov. 2019;24(5):563–78.PubMedCrossRef Badea MA, Balas M, Hermenean A, Ciceu A, Herman H, Daniela I, et al. Influence of matrigel on single- and multiple-spheroid cultures in breast cancer research. SLAS Discov. 2019;24(5):563–78.PubMedCrossRef
82.
go back to reference Beckingham LJ, Todorovic M, Velasquez JT, Vial ML, Chen M, Jenny AKE, et al. Three-dimensional cell culture can be regulated by vibration: low-frequency vibration increases the size of olfactory ensheathing cell spheroids. J Biol Eng. 2019;13:41.PubMedPubMedCentralCrossRef Beckingham LJ, Todorovic M, Velasquez JT, Vial ML, Chen M, Jenny AKE, et al. Three-dimensional cell culture can be regulated by vibration: low-frequency vibration increases the size of olfactory ensheathing cell spheroids. J Biol Eng. 2019;13:41.PubMedPubMedCentralCrossRef
83.
go back to reference Leung BM, Lesher-Perez SC, Matsuoka T, Moraes C, Takayama S. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci. 2015;3(2):336–44.PubMedCrossRef Leung BM, Lesher-Perez SC, Matsuoka T, Moraes C, Takayama S. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater Sci. 2015;3(2):336–44.PubMedCrossRef
84.
go back to reference Casey J, Yue X, Nguyen TD, Acun A, Zellmer VR, Siyuan Z, et al. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed Mater. 2017;12(2):025009.PubMedCrossRef Casey J, Yue X, Nguyen TD, Acun A, Zellmer VR, Siyuan Z, et al. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed Mater. 2017;12(2):025009.PubMedCrossRef
85.
go back to reference Nishikawa T, Tanaka Y, Nishikawa M, Ogino Y, Kusamori K, Narumi M, et al. Optimization of albumin secretion and metabolic activity of cytochrome P450 1A1 of human hepatoblastoma HepG2 cells in multicellular spheroids by controlling spheroid size. Biol Pharm Bull. 2017;40(3):334–8.PubMedCrossRef Nishikawa T, Tanaka Y, Nishikawa M, Ogino Y, Kusamori K, Narumi M, et al. Optimization of albumin secretion and metabolic activity of cytochrome P450 1A1 of human hepatoblastoma HepG2 cells in multicellular spheroids by controlling spheroid size. Biol Pharm Bull. 2017;40(3):334–8.PubMedCrossRef
86.
go back to reference Lee GH, Lee JS, Oh HJ, Lee SH. Reproducible construction of surface tension-mediated honeycomb concave microwell arrays for engineering of 3D microtissues with minimal cell loss. PLoS ONE. 2016;11(8):e0161026.PubMedPubMedCentralCrossRef Lee GH, Lee JS, Oh HJ, Lee SH. Reproducible construction of surface tension-mediated honeycomb concave microwell arrays for engineering of 3D microtissues with minimal cell loss. PLoS ONE. 2016;11(8):e0161026.PubMedPubMedCentralCrossRef
87.
go back to reference Liao W, Wang J, Xu J, You F, Pan M, Xiaoping X, et al. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool. J Tissue Eng. 2019;10:1–15.CrossRef Liao W, Wang J, Xu J, You F, Pan M, Xiaoping X, et al. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool. J Tissue Eng. 2019;10:1–15.CrossRef
88.
go back to reference Shi W, Kwon J, Huang Y, Tan J, Uhl CG, Ran H, et al. Facile tumor spheroids formation in large quantity with controllable size and high uniformity. Scientific Report. 2018;8:6837.CrossRef Shi W, Kwon J, Huang Y, Tan J, Uhl CG, Ran H, et al. Facile tumor spheroids formation in large quantity with controllable size and high uniformity. Scientific Report. 2018;8:6837.CrossRef
89.
go back to reference Elje E, Hesler M, Rundén-Pran E, Mann P, Mariussen E, Sylvia W, et al. The comet assay applied to HepG2 liver spheroids. Mutat Res. 2019;845:403033.CrossRef Elje E, Hesler M, Rundén-Pran E, Mann P, Mariussen E, Sylvia W, et al. The comet assay applied to HepG2 liver spheroids. Mutat Res. 2019;845:403033.CrossRef
90.
go back to reference Grandis RA, dos Santos PWS, de Oliveira KM, Machado ART, Aissa AF, Alzir AB, et al. Novel lawsone-containing ruthenium (II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem. 2019;85:455–68.PubMedCrossRef Grandis RA, dos Santos PWS, de Oliveira KM, Machado ART, Aissa AF, Alzir AB, et al. Novel lawsone-containing ruthenium (II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem. 2019;85:455–68.PubMedCrossRef
91.
go back to reference Thakuri PS, Ham SL. Tavana H. Microprinted tumor spheroids enable anti-cancer drug screening: Conf Proc IEEE Eng Med Biol Soc; 2016. p. 4177–80. Thakuri PS, Ham SL. Tavana H. Microprinted tumor spheroids enable anti-cancer drug screening: Conf Proc IEEE Eng Med Biol Soc; 2016. p. 4177–80.
92.
go back to reference Gaze MN, Mairs RJ, Boyack SM, Wheldon TE, Barrett A. 1’I-meta-iodobenzylguanidine therapy in neuroblastoma spheroids of different size. Br J Cancer. 1992;66(6):1048–52.PubMedPubMedCentralCrossRef Gaze MN, Mairs RJ, Boyack SM, Wheldon TE, Barrett A. 1’I-meta-iodobenzylguanidine therapy in neuroblastoma spheroids of different size. Br J Cancer. 1992;66(6):1048–52.PubMedPubMedCentralCrossRef
93.
go back to reference Kijanska M, Kelm J. In vitro 3D spheroids and microtissues: ATP-based cell viability and toxicity assays. Assay Guidance Manual. 2016;8:165. Kijanska M, Kelm J. In vitro 3D spheroids and microtissues: ATP-based cell viability and toxicity assays. Assay Guidance Manual. 2016;8:165.
94.
go back to reference Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS ONE. 2012;7(9):e44640.PubMedPubMedCentralCrossRef Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS ONE. 2012;7(9):e44640.PubMedPubMedCentralCrossRef
95.
go back to reference Lamichhane SP, Arya N, Kohler E, Xiang S, Christensen J, Shastri VP. Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. BMC Cancer. 2016;16:581.PubMedPubMedCentralCrossRef Lamichhane SP, Arya N, Kohler E, Xiang S, Christensen J, Shastri VP. Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. BMC Cancer. 2016;16:581.PubMedPubMedCentralCrossRef
96.
go back to reference Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN, et al. Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in iitro models in anti-cancer drug development. Theranostics. 2018;8(19):5259–75.PubMedPubMedCentralCrossRef Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN, et al. Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in iitro models in anti-cancer drug development. Theranostics. 2018;8(19):5259–75.PubMedPubMedCentralCrossRef
97.
go back to reference Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13:9545–71.PubMedPubMedCentralCrossRef Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13:9545–71.PubMedPubMedCentralCrossRef
98.
go back to reference Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3:177–82.PubMedCrossRef Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3:177–82.PubMedCrossRef
99.
go back to reference Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187–97.PubMedCrossRef Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187–97.PubMedCrossRef
100.
go back to reference Yinghuan L, Jie W, Wientjes MG, Jessie LSA. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev. 2012;64(1):29–39.CrossRef Yinghuan L, Jie W, Wientjes MG, Jessie LSA. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev. 2012;64(1):29–39.CrossRef
101.
go back to reference Michael WP, Janna KM, Valerie MW. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.CrossRef Michael WP, Janna KM, Valerie MW. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.CrossRef
102.
go back to reference Gao-Feng X, Ren X. Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat. 2016;2:357–264.CrossRef Gao-Feng X, Ren X. Function of cancer cell-derived extracellular matrix in tumor progression. J Cancer Metastasis Treat. 2016;2:357–264.CrossRef
103.
go back to reference Kimata K, Honma Y, Okayama M, Oguri K, Hozumi M, Suzuki S. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 1983;43:1347–54.PubMed Kimata K, Honma Y, Okayama M, Oguri K, Hozumi M, Suzuki S. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 1983;43:1347–54.PubMed
104.
go back to reference Chujie B, Min Y, Zhengfu F, Shu L, Tian G, Zhiwei F. Associations of chemo- and radio-resistant phenotypes with the gap junction, adhesion and extracellular matrix in a three-dimensional culture model of soft sarcoma. J Exp Clin Cancer Res. 2015;34:58.CrossRef Chujie B, Min Y, Zhengfu F, Shu L, Tian G, Zhiwei F. Associations of chemo- and radio-resistant phenotypes with the gap junction, adhesion and extracellular matrix in a three-dimensional culture model of soft sarcoma. J Exp Clin Cancer Res. 2015;34:58.CrossRef
106.
go back to reference Zanoni M, Piccinini F, Arienti C, Zamagni A, Spartaco SS, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.PubMedPubMedCentralCrossRef Zanoni M, Piccinini F, Arienti C, Zamagni A, Spartaco SS, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.PubMedPubMedCentralCrossRef
107.
go back to reference Khaitan D, Chandna S, Arya MB, Dwarakanath BS. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med. 2006;4:12.PubMedPubMedCentralCrossRef Khaitan D, Chandna S, Arya MB, Dwarakanath BS. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med. 2006;4:12.PubMedPubMedCentralCrossRef
108.
go back to reference Sanitini MT, Rainaldi G, Indovina PL. Apoptosis, cell adhesion and extracellular matrix in 3-D growth of multicelluler tumor spheroids. Critical Rev Oncol Hematol. 2001;36:75–87.CrossRef Sanitini MT, Rainaldi G, Indovina PL. Apoptosis, cell adhesion and extracellular matrix in 3-D growth of multicelluler tumor spheroids. Critical Rev Oncol Hematol. 2001;36:75–87.CrossRef
109.
110.
go back to reference Shin CS, Kwak B, Han B, Park K. Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm. 2013;10(6):2167–75.PubMedCrossRef Shin CS, Kwak B, Han B, Park K. Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm. 2013;10(6):2167–75.PubMedCrossRef
111.
go back to reference Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicology Sciences. 2012;127(2):403–11.CrossRef Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicology Sciences. 2012;127(2):403–11.CrossRef
112.
go back to reference Rimann M, Angres B, Patocchi-Tenzer I, Braum S, Graf-Hausner U. Automation of 3D cell culture using chemically defined hydrogels. J Lab Autom. 2014;19(2):191–7.PubMedCrossRef Rimann M, Angres B, Patocchi-Tenzer I, Braum S, Graf-Hausner U. Automation of 3D cell culture using chemically defined hydrogels. J Lab Autom. 2014;19(2):191–7.PubMedCrossRef
113.
go back to reference Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69:29–41.PubMedCrossRef Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69:29–41.PubMedCrossRef
114.
go back to reference Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev. 2014;69:254–69.PubMedCrossRef Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev. 2014;69:254–69.PubMedCrossRef
115.
go back to reference Triantafyllos S, Lance LM, Rakesh KJ. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4(4):292–319.CrossRef Triantafyllos S, Lance LM, Rakesh KJ. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4(4):292–319.CrossRef
116.
go back to reference Gabriel H, Paolo AN, Hera CL, Robert JM, Rakesh KJ. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol. 1997;15:778–83.CrossRef Gabriel H, Paolo AN, Hera CL, Robert JM, Rakesh KJ. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol. 1997;15:778–83.CrossRef
117.
go back to reference Gang C, Janet T, Rakesh KJ, Lance LM. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009;4:e4632.CrossRef Gang C, Janet T, Rakesh KJ, Lance LM. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009;4:e4632.CrossRef
118.
go back to reference Janet MT, Gang C, James AT, Sarah WA, Yves B, Rakesh KJ, et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA. 2012;109:911–6.CrossRef Janet MT, Gang C, James AT, Sarah WA, Yves B, Rakesh KJ, et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA. 2012;109:911–6.CrossRef
119.
go back to reference Koike C, McKee TD, Pluen A, Ramanujan A, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br J Cancer. 2002;86:947–53.PubMedPubMedCentralCrossRef Koike C, McKee TD, Pluen A, Ramanujan A, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br J Cancer. 2002;86:947–53.PubMedPubMedCentralCrossRef
120.
go back to reference Maria K, Panagiotis P, Vasiliki G, Triantafyllos S. Solid stress facilitates fibroblasts activation to promote pancreatic cancer cell migration. Ann Biomed Eng. 2018;46(5):657–69.CrossRef Maria K, Panagiotis P, Vasiliki G, Triantafyllos S. Solid stress facilitates fibroblasts activation to promote pancreatic cancer cell migration. Ann Biomed Eng. 2018;46(5):657–69.CrossRef
121.
122.
go back to reference Bull JA, Mech F, Quaiser T, Waters SL, Byrne HM. Mathematical modelling reveals cellular dynamics within tumour spheroids. Plos Comput Biol. 2020;16(8):e1007961.PubMedPubMedCentralCrossRef Bull JA, Mech F, Quaiser T, Waters SL, Byrne HM. Mathematical modelling reveals cellular dynamics within tumour spheroids. Plos Comput Biol. 2020;16(8):e1007961.PubMedPubMedCentralCrossRef
123.
go back to reference Dorie MJ, Kallman RF, Rapacchietta DF, Van Antwerp D, Huang YR. Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids. Exp Cell Res. 1982;141(1):201–9.PubMedCrossRef Dorie MJ, Kallman RF, Rapacchietta DF, Van Antwerp D, Huang YR. Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids. Exp Cell Res. 1982;141(1):201–9.PubMedCrossRef
124.
go back to reference Matthew JP, Nastaran Z, Kandice RJ, Johnathon NL, Gabriela IR, Amit G, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–54.CrossRef Matthew JP, Nastaran Z, Kandice RJ, Johnathon NL, Gabriela IR, Amit G, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–54.CrossRef
125.
go back to reference Michael SS, Jose IL, Ewan JM, Daniel RC, David S, Paul T, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell. 2011;19:776–91.CrossRef Michael SS, Jose IL, Ewan JM, Daniel RC, David S, Paul T, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell. 2011;19:776–91.CrossRef
126.
127.
go back to reference Abbas S, Judit Z, Donald P. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52:1565–76.CrossRef Abbas S, Judit Z, Donald P. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52:1565–76.CrossRef
128.
go back to reference Giannetti JR, Verdier C. Mechanical properties of 3D tumor spheroids measured by AFM. Comput Meth Biomech Biomed Eng. 2020;23(S1):S125–7.CrossRef Giannetti JR, Verdier C. Mechanical properties of 3D tumor spheroids measured by AFM. Comput Meth Biomech Biomed Eng. 2020;23(S1):S125–7.CrossRef
129.
go back to reference Dolega ME, Delarue M, Ingremeau F, Prost J, Delon A, Cappello G. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat Commun. 2017;8:14056.PubMedPubMedCentralCrossRef Dolega ME, Delarue M, Ingremeau F, Prost J, Delon A, Cappello G. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat Commun. 2017;8:14056.PubMedPubMedCentralCrossRef
130.
go back to reference Christoph M, Thomas JG, Pamela LS, David B, Nadine G, Richard G, et al. Collective forces of tumor spheroids in three-dimensional biopolymer networks. eLife. 2020;9:e51912.CrossRef Christoph M, Thomas JG, Pamela LS, David B, Nadine G, Richard G, et al. Collective forces of tumor spheroids in three-dimensional biopolymer networks. eLife. 2020;9:e51912.CrossRef
131.
go back to reference Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal. 2019;9(4):238–47.PubMedCrossRef Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal. 2019;9(4):238–47.PubMedCrossRef
133.
go back to reference Zuchowska A, Jastrzębska E, Brzozka Z. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta. 2017;990:110–20.PubMedCrossRef Zuchowska A, Jastrzębska E, Brzozka Z. 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Anal Chim Acta. 2017;990:110–20.PubMedCrossRef
134.
go back to reference Fukuda J, Nakazawa K. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng. 2005;11:1254–62.PubMedCrossRef Fukuda J, Nakazawa K. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng. 2005;11:1254–62.PubMedCrossRef
135.
go back to reference Okuyama T, Yamazoe H, Mochizuki N, Khademhosseini A, Suzuki H, Fukuda J. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. J Biosci Bioeng. 2010;110:572–6.PubMedCrossRef Okuyama T, Yamazoe H, Mochizuki N, Khademhosseini A, Suzuki H, Fukuda J. Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. J Biosci Bioeng. 2010;110:572–6.PubMedCrossRef
136.
go back to reference Lim W, Park S. A microfluidic spheroid culture device with a concentration gradient generator for high-throughput screening of drug efficacy. Molecules. 2018;23(12):3355.PubMedCentralCrossRef Lim W, Park S. A microfluidic spheroid culture device with a concentration gradient generator for high-throughput screening of drug efficacy. Molecules. 2018;23(12):3355.PubMedCentralCrossRef
137.
go back to reference Kwapiszewska K, Michalczuk A, Rybka M, Kwapiszewski R, Brzózka Z. A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip. 2014;14:2096.PubMedCrossRef Kwapiszewska K, Michalczuk A, Rybka M, Kwapiszewski R, Brzózka Z. A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip. 2014;14:2096.PubMedCrossRef
138.
go back to reference Kim JY, Fluri DA, Kelm JM, Hierlemann A, Frey O. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J Lab Autom. 2015;20(3):274–82.PubMedCrossRef Kim JY, Fluri DA, Kelm JM, Hierlemann A, Frey O. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J Lab Autom. 2015;20(3):274–82.PubMedCrossRef
139.
go back to reference Iliescu C, Taylor H, Avram M, Miao J, Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics. 2012;6(1):16505–16.PubMedCrossRef Iliescu C, Taylor H, Avram M, Miao J, Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics. 2012;6(1):16505–16.PubMedCrossRef
140.
go back to reference Keloth A, Anderson O, Risbridger D, Paterson L. Single cell isolation using optical tweezers. Micromachines (Basel). 2018;9(9):434.CrossRef Keloth A, Anderson O, Risbridger D, Paterson L. Single cell isolation using optical tweezers. Micromachines (Basel). 2018;9(9):434.CrossRef
141.
go back to reference Chen H, Sun J, Wolvetang E, Cooper-White J. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. Lab Chip. 2014;15(4):1072–83.CrossRef Chen H, Sun J, Wolvetang E, Cooper-White J. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. Lab Chip. 2014;15(4):1072–83.CrossRef
142.
go back to reference Zhang Z, Chen YC, Urs S, Chen L. Scalable multiplexed drug-combination screening platforms using 3D microtumor model for precision medicine. Small. 2018;14(42):e1703617.PubMedCrossRef Zhang Z, Chen YC, Urs S, Chen L. Scalable multiplexed drug-combination screening platforms using 3D microtumor model for precision medicine. Small. 2018;14(42):e1703617.PubMedCrossRef
143.
go back to reference Zhang B, Kim MC, Thorsen T, Wang Z. A self-contained microfluidic cell culture system. Biomed Microdevices. 2009;11(6):1233–7.PubMedCrossRef Zhang B, Kim MC, Thorsen T, Wang Z. A self-contained microfluidic cell culture system. Biomed Microdevices. 2009;11(6):1233–7.PubMedCrossRef
144.
go back to reference Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip. 2015;15(4):1195–204.PubMedCrossRef Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip. 2015;15(4):1195–204.PubMedCrossRef
145.
go back to reference Frisk T, Rydholm S, Andersson H, Stemme G, Brismar H. A concept for miniaturized 3-D cell culture using an extracellular matrix gel. Electrophoresis. 2005;26(24):4751–8.PubMedCrossRef Frisk T, Rydholm S, Andersson H, Stemme G, Brismar H. A concept for miniaturized 3-D cell culture using an extracellular matrix gel. Electrophoresis. 2005;26(24):4751–8.PubMedCrossRef
146.
go back to reference Wanyoung L, Hong-Hoa H, Daeun Y, Jeonghun H, Jeong Eon L, Sangmin K, et al. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Analyst. 2018;143:5841–7.CrossRef Wanyoung L, Hong-Hoa H, Daeun Y, Jeonghun H, Jeong Eon L, Sangmin K, et al. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device. Analyst. 2018;143:5841–7.CrossRef
147.
go back to reference Kartanas T, Toprakcioglu Z, Hakala TA, Levin A, Herling TW. Mechanism of droplet-formation in a supersonic microfluidic spray device. Appl Phys Lett. 2020;116:153702.CrossRef Kartanas T, Toprakcioglu Z, Hakala TA, Levin A, Herling TW. Mechanism of droplet-formation in a supersonic microfluidic spray device. Appl Phys Lett. 2020;116:153702.CrossRef
148.
go back to reference Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Kam WL. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. 2013;3:3642.CrossRef Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Kam WL. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. 2013;3:3642.CrossRef
149.
go back to reference Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Bahar F, et al. Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical. 2018;263:151–76.CrossRef Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Bahar F, et al. Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical. 2018;263:151–76.CrossRef
150.
go back to reference Bauer S, Huldt CW, Kanebratt K, Durieux I. Functional coupling of human pancreatic islets and liver spheroids on-a-chip]-functional co-culture system. Sci Rep. 2017;7:14.CrossRef Bauer S, Huldt CW, Kanebratt K, Durieux I. Functional coupling of human pancreatic islets and liver spheroids on-a-chip]-functional co-culture system. Sci Rep. 2017;7:14.CrossRef
151.
go back to reference Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Prateek S, et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol. 2015;205:24–35.PubMedCrossRef Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Prateek S, et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol. 2015;205:24–35.PubMedCrossRef
152.
go back to reference Jardim DL, Gagliato DDDM, Nikanjam M, Barkauskas DA, Kurzrock R. Efficacy and safety of anticancer drug combinations: a meta-analysis of randomized trials with a focus on immunotherapeutics and gene-targeted compounds. Oncoimmunology. 2020;9(1):1710052.PubMedPubMedCentralCrossRef Jardim DL, Gagliato DDDM, Nikanjam M, Barkauskas DA, Kurzrock R. Efficacy and safety of anticancer drug combinations: a meta-analysis of randomized trials with a focus on immunotherapeutics and gene-targeted compounds. Oncoimmunology. 2020;9(1):1710052.PubMedPubMedCentralCrossRef
153.
go back to reference Mitchell MS. Combinations of anticancer drugs and immunotherapy. Cancer Immunol Immunother. 2013;52(11):686–92.CrossRef Mitchell MS. Combinations of anticancer drugs and immunotherapy. Cancer Immunol Immunother. 2013;52(11):686–92.CrossRef
155.
go back to reference An D, Kim K, Kim J. Microfluidic system bed high throughput drug screening system for curcumin/TRAIL combinational chemotherapy in human prostate cancer PC3 cells. Biomol Ther (Seoul). 2014;22(4):355–62.CrossRef An D, Kim K, Kim J. Microfluidic system bed high throughput drug screening system for curcumin/TRAIL combinational chemotherapy in human prostate cancer PC3 cells. Biomol Ther (Seoul). 2014;22(4):355–62.CrossRef
156.
go back to reference Mulholland T, McAllister M, Patek S, Flint D, Underwood M, Alexander S, et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep. 2018;8:14672.PubMedPubMedCentralCrossRef Mulholland T, McAllister M, Patek S, Flint D, Underwood M, Alexander S, et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep. 2018;8:14672.PubMedPubMedCentralCrossRef
157.
go back to reference Fidalgo LM, Maerkl SJ. A software-programmable microfluidic device for automated biology. Lab Chip. 2011;11(9):1612–9.PubMedCrossRef Fidalgo LM, Maerkl SJ. A software-programmable microfluidic device for automated biology. Lab Chip. 2011;11(9):1612–9.PubMedCrossRef
158.
go back to reference Cheng YH, Chen YC, Brien R, Yoon E. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. Lab Chip. 2016;16(19):3708–17.PubMedPubMedCentralCrossRef Cheng YH, Chen YC, Brien R, Yoon E. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. Lab Chip. 2016;16(19):3708–17.PubMedPubMedCentralCrossRef
159.
go back to reference Hickman JA, Graeser R, de Hoogt R, Suzana Vidic S, Brito C, Matthias G, et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9:1115–28.PubMedCrossRef Hickman JA, Graeser R, de Hoogt R, Suzana Vidic S, Brito C, Matthias G, et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9:1115–28.PubMedCrossRef
160.
go back to reference Millard M, Yakavets I, Zorin V, Kulmukhamedova A, Marchal S, Lina B. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int J Nanomed. 2017;12:7993–8007.CrossRef Millard M, Yakavets I, Zorin V, Kulmukhamedova A, Marchal S, Lina B. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int J Nanomed. 2017;12:7993–8007.CrossRef
162.
go back to reference Jeongwu L, Svetlana K, Yuri K, Aiguo L, Qin S, Nicholas MD, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.CrossRef Jeongwu L, Svetlana K, Yuri K, Aiguo L, Qin S, Nicholas MD, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.CrossRef
163.
go back to reference Ochs RL, Fensterer J, Ohori NP, Wells A, Gabrin M, George LD, et al. Evidence for the isolation, growth, and characterization of malignant cells in primary cultures of human tumors. Vitro Cell Dev Biol Anim. 2003;39:63–70.CrossRef Ochs RL, Fensterer J, Ohori NP, Wells A, Gabrin M, George LD, et al. Evidence for the isolation, growth, and characterization of malignant cells in primary cultures of human tumors. Vitro Cell Dev Biol Anim. 2003;39:63–70.CrossRef
164.
go back to reference Song Y, Kim JS, Kim SH, Park YK, Yu E, Kim KH, et al. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):109.PubMedPubMedCentralCrossRef Song Y, Kim JS, Kim SH, Park YK, Yu E, Kim KH, et al. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):109.PubMedPubMedCentralCrossRef
166.
go back to reference Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52(4):550–9.PubMedPubMedCentralCrossRef Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52(4):550–9.PubMedPubMedCentralCrossRef
167.
go back to reference Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. Br J Cancer. 2005;92(5):935–41.PubMedPubMedCentralCrossRef Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. Br J Cancer. 2005;92(5):935–41.PubMedPubMedCentralCrossRef
168.
go back to reference Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol. 2002;39(5):530–5.PubMedCrossRef Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol. 2002;39(5):530–5.PubMedCrossRef
169.
go back to reference Eliza LSF, Tan BT, Hanry Y, Edward KHC. 3D culture as a clinically relevant model for personalized medicine. SLAS Technol. 2017;22(3):245–53.CrossRef Eliza LSF, Tan BT, Hanry Y, Edward KHC. 3D culture as a clinically relevant model for personalized medicine. SLAS Technol. 2017;22(3):245–53.CrossRef
170.
go back to reference Hiroyuki M, Hisatsugu M, Fumihiko K, Tadayoshi Y, Kenji K, Yoshiharu S, et al. An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget. 2018;9(31):21950–64.CrossRef Hiroyuki M, Hisatsugu M, Fumihiko K, Tadayoshi Y, Kenji K, Yoshiharu S, et al. An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget. 2018;9(31):21950–64.CrossRef
Metadata
Title
Challenges of applying multicellular tumor spheroids in preclinical phase
Authors
Se Jik Han
Sangwoo Kwon
Kyung Sook Kim
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-01853-8

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine