Skip to main content
Top
Published in: Medical Oncology 6/2018

01-06-2018 | Review Article

Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors

Authors: Vishal Jindal, Ena Arora, Sorab Gupta

Published in: Medical Oncology | Issue 6/2018

Login to get access

Abstract

Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.
Literature
2.
go back to reference Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6.CrossRefPubMedPubMedCentral Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6.CrossRefPubMedPubMedCentral
3.
go back to reference Zhao Y, Wang QJ, Yang S, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009;183:5563–74.CrossRefPubMed Zhao Y, Wang QJ, Yang S, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009;183:5563–74.CrossRefPubMed
4.
go back to reference Zhong XS, Matsushita M, Plotkin J, et al. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8* T cell-mediated tumor eradication. MolTher. 2010;18:413–20. Zhong XS, Matsushita M, Plotkin J, et al. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8* T cell-mediated tumor eradication. MolTher. 2010;18:413–20.
5.
go back to reference Wilkie S, Picco G, Foster J, et al. Re-targeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180:4901–9.CrossRefPubMed Wilkie S, Picco G, Foster J, et al. Re-targeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180:4901–9.CrossRefPubMed
6.
go back to reference Yeku OO, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44:412–8.CrossRefPubMedPubMedCentral Yeku OO, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44:412–8.CrossRefPubMedPubMedCentral
7.
go back to reference Suarez ER, Chang K, Sun J, et al. Chimeric antigen receptor T cells secreting anti–PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 2016;7:34341–55.CrossRefPubMedPubMedCentral Suarez ER, Chang K, Sun J, et al. Chimeric antigen receptor T cells secreting anti–PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 2016;7:34341–55.CrossRefPubMedPubMedCentral
8.
go back to reference Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.CrossRefPubMedPubMedCentral Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.CrossRefPubMedPubMedCentral
9.
go back to reference Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Med Sci Transl. 2015;7:303ra139.CrossRef Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Med Sci Transl. 2015;7:303ra139.CrossRef
10.
go back to reference Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, Zheng Z, Vogl DT, Cohen AD, Weiss BM, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373:1040–7.CrossRefPubMedPubMedCentral Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ, Zheng Z, Vogl DT, Cohen AD, Weiss BM, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373:1040–7.CrossRefPubMedPubMedCentral
11.
go back to reference Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.CrossRefPubMed Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.CrossRefPubMed
16.
go back to reference Yano S, Kondo K, Yamaguchi M, Richmond G, Hutchison M, Wakeling A, et al. Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res. 2002;23(5A):3639–50. 56. Yano S, Kondo K, Yamaguchi M, Richmond G, Hutchison M, Wakeling A, et al. Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res. 2002;23(5A):3639–50. 56.
18.
go back to reference Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 2002;7(Suppl 4):31–9.CrossRefPubMed Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 2002;7(Suppl 4):31–9.CrossRefPubMed
19.
go back to reference Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, et al. Prognostic value of epidermal growth factor receptor in patients with glio-blastomamultiforme. Cancer Res. 2003;63(20):6962–70. 59.PubMed Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, et al. Prognostic value of epidermal growth factor receptor in patients with glio-blastomamultiforme. Cancer Res. 2003;63(20):6962–70. 59.PubMed
20.
go back to reference Frederick L, Wang X-Y, Eley G, James CD. Diversity and frequency of epider-mal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60(5):1383–7. 60.PubMed Frederick L, Wang X-Y, Eley G, James CD. Diversity and frequency of epider-mal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60(5):1383–7. 60.PubMed
24.
go back to reference O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399). https://doi.org/10.1126/scitranslmed.aaa098468. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399). https://​doi.​org/​10.​1126/​scitranslmed.​aaa098468.
25.
go back to reference Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for inter-leukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res. 1999;5(5):985–90. 70.PubMed Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for inter-leukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res. 1999;5(5):985–90. 70.PubMed
36.
go back to reference Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira ACP, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32:1059–70.CrossRefPubMed Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira ACP, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32:1059–70.CrossRefPubMed
37.
go back to reference Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31:71 – 5.CrossRefPubMed Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31:71 – 5.CrossRefPubMed
38.
go back to reference Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75:3505–18.CrossRefPubMedPubMedCentral Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75:3505–18.CrossRefPubMedPubMedCentral
39.
go back to reference Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5.
40.
go back to reference Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5.
41.
go back to reference Ciceri F, Bonini C, Stanghellini MTL, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidenticalhaemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol. 2009;10:489–500.CrossRefPubMed Ciceri F, Bonini C, Stanghellini MTL, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidenticalhaemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I–II study. Lancet Oncol. 2009;10:489–500.CrossRefPubMed
42.
go back to reference Slaney CY, Kershaw MH, Darcy PK. Trafficking of T Cells into Tumors. Cancer Res. 2014;74:7168–74.CrossRefPubMed Slaney CY, Kershaw MH, Darcy PK. Trafficking of T Cells into Tumors. Cancer Res. 2014;74:7168–74.CrossRefPubMed
44.
go back to reference Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother (Hagerstown:1997). 2010;33:780.CrossRef Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother (Hagerstown:1997). 2010;33:780.CrossRef
45.
go back to reference Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113:6392 – 402.CrossRefPubMedPubMedCentral Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113:6392 – 402.CrossRefPubMedPubMedCentral
52.
go back to reference Bernfield M, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.CrossRefPubMed Bernfield M, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.CrossRefPubMed
53.
go back to reference de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD. Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4 + T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol. 2007;82:1289–300.CrossRefPubMed de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD. Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4 + T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol. 2007;82:1289–300.CrossRefPubMed
54.
go back to reference Vlodavsky I, Ilan N, Naggi A, Casu B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des. 2007;13:2057–73. 14.CrossRefPubMed Vlodavsky I, Ilan N, Naggi A, Casu B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des. 2007;13:2057–73. 14.CrossRefPubMed
55.
go back to reference Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–90.CrossRefPubMed Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–90.CrossRefPubMed
57.
go back to reference Yaghoubi SS, Jensen MC, Satyamurthy N, Paik D, Czernin J, Gambh SS. Non-invasive detection of therapeutic cytolytic T Cells in patients with [18-F]FHBG positron emission tomography in a glioma patient.Nat. Clin Pract Oncol. 2009;6:53–8.CrossRef Yaghoubi SS, Jensen MC, Satyamurthy N, Paik D, Czernin J, Gambh SS. Non-invasive detection of therapeutic cytolytic T Cells in patients with [18-F]FHBG positron emission tomography in a glioma patient.Nat. Clin Pract Oncol. 2009;6:53–8.CrossRef
58.
go back to reference Brown CE, Badie B, Barish ME, Weng L, Julie R, Chang W, Naranjo A, Starr R, Wagner J, Wright C, et al. Bioactivity and safety of IL13Ra2-redirected chimeric antigen receptor CD8 + T cells inpatients with recurrent glioblastoma. Clin Cancer Res. 2016;21:4062–72.CrossRef Brown CE, Badie B, Barish ME, Weng L, Julie R, Chang W, Naranjo A, Starr R, Wagner J, Wright C, et al. Bioactivity and safety of IL13Ra2-redirected chimeric antigen receptor CD8 + T cells inpatients with recurrent glioblastoma. Clin Cancer Res. 2016;21:4062–72.CrossRef
59.
go back to reference Brown CE, Alizadeh D, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.CrossRefPubMedPubMedCentral Brown CE, Alizadeh D, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.CrossRefPubMedPubMedCentral
60.
go back to reference Katz SC, Burga RA, Mccormack E, Wang LJ, Mooring W, Point G, Khare PD, Thorn M, Ma Q, Stainken BF, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigenreceptor modified T cell therapy for CEA + liver metastases. Clin Cancer Res. 2015;21:3149–59.CrossRefPubMedPubMedCentral Katz SC, Burga RA, Mccormack E, Wang LJ, Mooring W, Point G, Khare PD, Thorn M, Ma Q, Stainken BF, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigenreceptor modified T cell therapy for CEA + liver metastases. Clin Cancer Res. 2015;21:3149–59.CrossRefPubMedPubMedCentral
61.
go back to reference Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in humanneoplasia: rationale and promise. Cancer Cell. 2003;4:431–6.CrossRefPubMed Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in humanneoplasia: rationale and promise. Cancer Cell. 2003;4:431–6.CrossRefPubMed
62.
go back to reference Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M. Physiological control of immune response and inflammatorytissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004;22:657–82.CrossRefPubMed Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M. Physiological control of immune response and inflammatorytissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004;22:657–82.CrossRefPubMed
64.
go back to reference Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.CrossRefPubMed Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358:1–3.CrossRefPubMed
65.
66.
go back to reference Hirata F, Ohnishi T, Hayaishi O. Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. O2- complex. J BiolChem. 1977;252(13):4637–42. Hirata F, Ohnishi T, Hayaishi O. Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. O2- complex. J BiolChem. 1977;252(13):4637–42.
67.
go back to reference Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101(2):151–5.CrossRefPubMed Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101(2):151–5.CrossRefPubMed
68.
go back to reference Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.CrossRefPubMedPubMedCentral Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.CrossRefPubMedPubMedCentral
69.
go back to reference Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.CrossRefPubMed Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.CrossRefPubMed
70.
go back to reference Ninomiya S, Hara T, Tsurumi H, et al. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol. 2011;90(4):409–16.CrossRefPubMed Ninomiya S, Hara T, Tsurumi H, et al. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol. 2011;90(4):409–16.CrossRefPubMed
71.
go back to reference Ninomiya S, Hara T, Tsurumi H, et al. Indoleamine 2,3-dioxygenase expression and serum kynurenine concentrations in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53(6):1143–5.CrossRefPubMed Ninomiya S, Hara T, Tsurumi H, et al. Indoleamine 2,3-dioxygenase expression and serum kynurenine concentrations in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53(6):1143–5.CrossRefPubMed
73.
74.
go back to reference Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184:747–52.CrossRefPubMed Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184:747–52.CrossRefPubMed
75.
go back to reference Clarke SR. The critical role of CD40/CD40L in the CD4-dependent generation of CD8 + T cell immunity. J Leukoc Biol. 2000;67:607–14.CrossRefPubMed Clarke SR. The critical role of CD40/CD40L in the CD4-dependent generation of CD8 + T cell immunity. J Leukoc Biol. 2000;67:607–14.CrossRefPubMed
76.
go back to reference Cayabyab M, Phillips JH, Lanier LL. CD40 preferentially costimulates activation of CD4 + T lymphocytes. J Immunol. 1994;152:1523–31.PubMed Cayabyab M, Phillips JH, Lanier LL. CD40 preferentially costimulates activation of CD4 + T lymphocytes. J Immunol. 1994;152:1523–31.PubMed
77.
go back to reference Peng X, Kasran A, Warmerdam PA, de Boer M, Ceuppens JL. Accessory signaling by CD40 for T cell activation: induction of Th1 and Th2 cytokines and synergy with interleukin-12 for interferon-gamma production. Eur J Immunol. 1996;26:1621–7.CrossRefPubMed Peng X, Kasran A, Warmerdam PA, de Boer M, Ceuppens JL. Accessory signaling by CD40 for T cell activation: induction of Th1 and Th2 cytokines and synergy with interleukin-12 for interferon-gamma production. Eur J Immunol. 1996;26:1621–7.CrossRefPubMed
86.
go back to reference Scanlan MJ, Mohan Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activtion proteinα, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA. 1994;91:5657–61.CrossRefPubMedPubMedCentral Scanlan MJ, Mohan Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activtion proteinα, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA. 1994;91:5657–61.CrossRefPubMedPubMedCentral
87.
go back to reference Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 1990;87:7235–9.CrossRefPubMedPubMedCentral Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 1990;87:7235–9.CrossRefPubMedPubMedCentral
88.
go back to reference Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210:1125–35.CrossRefPubMedPubMedCentral Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210:1125–35.CrossRefPubMedPubMedCentral
89.
go back to reference Kakarla S, Chow KKH, Mata M, Shaffer DR, Song XT, Wu MF, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21:1611–20.CrossRefPubMedPubMedCentral Kakarla S, Chow KKH, Mata M, Shaffer DR, Song XT, Wu MF, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21:1611–20.CrossRefPubMedPubMedCentral
90.
go back to reference Schuberth PC, Hagedorn C, Jenesen SM, Gulati P, van den Broek M, Mischo A, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med. 2013;11:187.CrossRefPubMedPubMedCentral Schuberth PC, Hagedorn C, Jenesen SM, Gulati P, van den Broek M, Mischo A, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med. 2013;11:187.CrossRefPubMedPubMedCentral
91.
go back to reference Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al. Targeting fibroblast activation protein intumor stroma with chimeric antigen receptor T cells can inhibit tumorgrowth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2:154–66.CrossRefPubMed Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al. Targeting fibroblast activation protein intumor stroma with chimeric antigen receptor T cells can inhibit tumorgrowth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2:154–66.CrossRefPubMed
92.
go back to reference Lo A, Wang LC, Scholler J, Monslow J, Avery D, Newick K, O’Brien S, Evans RA, Bajor DJ, Clendenin C, et al. Tumor-promoting desmoplasia is disruptedby depleting FAP-expressing stromal cells. Cancer Res. 2015;75:2800–10.CrossRefPubMedPubMedCentral Lo A, Wang LC, Scholler J, Monslow J, Avery D, Newick K, O’Brien S, Evans RA, Bajor DJ, Clendenin C, et al. Tumor-promoting desmoplasia is disruptedby depleting FAP-expressing stromal cells. Cancer Res. 2015;75:2800–10.CrossRefPubMedPubMedCentral
93.
go back to reference John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK. Anti-PD-1 antibody therapy potentlenhances the eradication of established tumors by gene-modified T cells.Clin. Cancer Res. 2013;19:5636–46. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK. Anti-PD-1 antibody therapy potentlenhances the eradication of established tumors by gene-modified T cells.Clin. Cancer Res. 2013;19:5636–46.
94.
go back to reference Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Pure E, Milone MC, et al. Multifactorial T-cell hypofunction that isreversible can limit the efficacy of chimeric antigen receptor-transducedhuman T cells in solid tumors. Clin Cancer Res. 2014;20:4262–73.CrossRefPubMedPubMedCentral Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Pure E, Milone MC, et al. Multifactorial T-cell hypofunction that isreversible can limit the efficacy of chimeric antigen receptor-transducedhuman T cells in solid tumors. Clin Cancer Res. 2014;20:4262–73.CrossRefPubMedPubMedCentral
95.
go back to reference Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK. A chimeric switch-receptor targeting PD1 augmentsthe efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76:1578–90.CrossRefPubMedPubMedCentral Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK. A chimeric switch-receptor targeting PD1 augmentsthe efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76:1578–90.CrossRefPubMedPubMedCentral
96.
go back to reference Prosser ME, Brown CE, Shami AF, Forman SJ, Jensen MC. Tumor PD-L1 costimulatesprimary human CD8(+) cytotoxic T cells modified to express aPD1:CD28 chimeric receptor. Mol Immunol. 2012;51:263–72.CrossRefPubMed Prosser ME, Brown CE, Shami AF, Forman SJ, Jensen MC. Tumor PD-L1 costimulatesprimary human CD8(+) cytotoxic T cells modified to express aPD1:CD28 chimeric receptor. Mol Immunol. 2012;51:263–72.CrossRefPubMed
98.
go back to reference Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8 + T cells in vivo by IL-15. Immunity. 1998;8(5):591–9.CrossRefPubMed Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8 + T cells in vivo by IL-15. Immunity. 1998;8(5):591–9.CrossRefPubMed
99.
go back to reference Teague RM, et al. Interleukin-15 rescues tolerant CD8 + T cells for use in adoptive immunotherapy of established tumors. Nat Med. 2006;12(3):335–41.CrossRefPubMed Teague RM, et al. Interleukin-15 rescues tolerant CD8 + T cells for use in adoptive immunotherapy of established tumors. Nat Med. 2006;12(3):335–41.CrossRefPubMed
100.
Metadata
Title
Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors
Authors
Vishal Jindal
Ena Arora
Sorab Gupta
Publication date
01-06-2018
Publisher
Springer US
Published in
Medical Oncology / Issue 6/2018
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-018-1149-9

Other articles of this Issue 6/2018

Medical Oncology 6/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.