Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Cervical Cancer | Research

MUC1 promotes cervical squamous cell carcinoma through ERK phosphorylation-mediated regulation of ITGA2/ITGA3

Authors: Aiqin Zhao, Yunzhi Pan, Yingyin Gao, Zheng Zhi, Haiying Lu, Bei Dong, Xuan Zhang, Meiying Wu, Fenxia Zhu, Sufang Zhou, Sai Ma

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
2.
go back to reference Guo M, Xu J, Du J. Trends in cervical cancer mortality in China from 1989 to 2018: an age-period-cohort study and joinpoint analysis. BMC Public Health. 2021;21(1):1329.PubMedPubMedCentralCrossRef Guo M, Xu J, Du J. Trends in cervical cancer mortality in China from 1989 to 2018: an age-period-cohort study and joinpoint analysis. BMC Public Health. 2021;21(1):1329.PubMedPubMedCentralCrossRef
3.
go back to reference Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.PubMedCrossRef Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.PubMedCrossRef
4.
go back to reference Wei M, Zhou W, Bi Y, Wang H, Liu Y, Zhang ZJ. Rising mortality rate of cervical Cancer in younger women in Urban China. J Gen Intern Med. 2019;34(2):281–4.PubMedCrossRef Wei M, Zhou W, Bi Y, Wang H, Liu Y, Zhang ZJ. Rising mortality rate of cervical Cancer in younger women in Urban China. J Gen Intern Med. 2019;34(2):281–4.PubMedCrossRef
5.
go back to reference Ma Y, Di J, Bi H, Zhao Q, Qin T, Xu W, Liu Z, Yi N, Zhao J, Zhou D, et al. Comparison of the detection rate of cervical lesion with TruScreen, LBC test and HPV test: a real-world study based on population screening of cervical cancer in rural areas of China. PLoS ONE. 2020;15(7):e0233986.PubMedPubMedCentralCrossRef Ma Y, Di J, Bi H, Zhao Q, Qin T, Xu W, Liu Z, Yi N, Zhao J, Zhou D, et al. Comparison of the detection rate of cervical lesion with TruScreen, LBC test and HPV test: a real-world study based on population screening of cervical cancer in rural areas of China. PLoS ONE. 2020;15(7):e0233986.PubMedPubMedCentralCrossRef
6.
8.
go back to reference Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol. 2018;122:98–122.PubMedCrossRef Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol. 2018;122:98–122.PubMedCrossRef
9.
go back to reference Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Hold GL, De Winter BY, Smet A. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol. 2022;7(5):455–71.PubMedCrossRef Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Hold GL, De Winter BY, Smet A. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol. 2022;7(5):455–71.PubMedCrossRef
10.
go back to reference Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R, Prokocimer Z, Smorodinsky NI, Rubinstein DB, Wreschner DH. The MUC1 SEA module is a self-cleaving domain. J Biol Chem. 2005;280(39):33374–86.PubMedCrossRef Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R, Prokocimer Z, Smorodinsky NI, Rubinstein DB, Wreschner DH. The MUC1 SEA module is a self-cleaving domain. J Biol Chem. 2005;280(39):33374–86.PubMedCrossRef
12.
go back to reference Dhar P, McAuley J. The role of the cell surface mucin MUC1 as a barrier to infection and Regulator of inflammation. Front Cell Infect Microbiol. 2019;9:117.PubMedPubMedCentralCrossRef Dhar P, McAuley J. The role of the cell surface mucin MUC1 as a barrier to infection and Regulator of inflammation. Front Cell Infect Microbiol. 2019;9:117.PubMedPubMedCentralCrossRef
13.
go back to reference Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, Banerjee K, Jain M, Solheim JC, Kumar S, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38(1–2):223–36.PubMedPubMedCentralCrossRef Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, Banerjee K, Jain M, Solheim JC, Kumar S, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38(1–2):223–36.PubMedPubMedCentralCrossRef
14.
go back to reference Marimuthu S, Rauth S, Ganguly K, Zhang C, Lakshmanan I, Batra SK, Ponnusamy MP. Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev. 2021;40(2):575–88.PubMedPubMedCentralCrossRef Marimuthu S, Rauth S, Ganguly K, Zhang C, Lakshmanan I, Batra SK, Ponnusamy MP. Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev. 2021;40(2):575–88.PubMedPubMedCentralCrossRef
15.
go back to reference van Putten JPM, Strijbis K. Transmembrane Mucins: signaling receptors at the intersection of inflammation and Cancer. J Innate Immun. 2017;9(3):281–99.PubMedPubMedCentralCrossRef van Putten JPM, Strijbis K. Transmembrane Mucins: signaling receptors at the intersection of inflammation and Cancer. J Innate Immun. 2017;9(3):281–99.PubMedPubMedCentralCrossRef
16.
go back to reference Liu B, Pan S, Xiao Y, Liu Q, Xu J, Jia L. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 2018;37(1):316.PubMedPubMedCentralCrossRef Liu B, Pan S, Xiao Y, Liu Q, Xu J, Jia L. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 2018;37(1):316.PubMedPubMedCentralCrossRef
17.
go back to reference Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, et al. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109(34):13787–92.PubMedPubMedCentralCrossRef Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, et al. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109(34):13787–92.PubMedPubMedCentralCrossRef
18.
go back to reference Maeda T, Hiraki M, Jin C, Rajabi H, Tagde A, Alam M, Bouillez A, Hu X, Suzuki Y, Miyo M, et al. MUC1-C induces PD-L1 and Immune Evasion in Triple-negative breast Cancer. Cancer Res. 2018;78(1):205–15.PubMedCrossRef Maeda T, Hiraki M, Jin C, Rajabi H, Tagde A, Alam M, Bouillez A, Hu X, Suzuki Y, Miyo M, et al. MUC1-C induces PD-L1 and Immune Evasion in Triple-negative breast Cancer. Cancer Res. 2018;78(1):205–15.PubMedCrossRef
19.
go back to reference Lim SC, Zhang S, Ishii G, Endoh Y, Kodama K, Miyamoto S, Hayashi R, Ebihara S, Cho JS, Ochiai A. Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res. 2004;10(1 Pt 1):166–72.PubMedCrossRef Lim SC, Zhang S, Ishii G, Endoh Y, Kodama K, Miyamoto S, Hayashi R, Ebihara S, Cho JS, Ochiai A. Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res. 2004;10(1 Pt 1):166–72.PubMedCrossRef
20.
go back to reference Togami S, Nomoto M, Higashi M, Goto M, Yonezawa S, Tsuji T, Batra SK, Douchi T. Expression of mucin antigens (MUC1 and MUC16) as a prognostic factor for mucinous adenocarcinoma of the uterine cervix. J Obstet Gynaecol Res. 2010;36(3):588–97.PubMedCrossRef Togami S, Nomoto M, Higashi M, Goto M, Yonezawa S, Tsuji T, Batra SK, Douchi T. Expression of mucin antigens (MUC1 and MUC16) as a prognostic factor for mucinous adenocarcinoma of the uterine cervix. J Obstet Gynaecol Res. 2010;36(3):588–97.PubMedCrossRef
21.
go back to reference Toyoda S, Kita T, Sugiura A, Itani Y, Okada H, Nakamura S, Ohbayashi C. Cervical adenocarcinoma with stromal micropapillary pattern. Diagn Cytopathol. 2016;44(2):133–6.PubMedCrossRef Toyoda S, Kita T, Sugiura A, Itani Y, Okada H, Nakamura S, Ohbayashi C. Cervical adenocarcinoma with stromal micropapillary pattern. Diagn Cytopathol. 2016;44(2):133–6.PubMedCrossRef
22.
go back to reference Samouelian V, Revillion F, Alloy N, Lhotellier V, Leblanc E, Peyrat JP. Measurement of mRNA of 11 biomarkers by RT-PCR to detect lymph node involvement in cervical cancer. Int J Biol Markers. 2008;23(2):74–82.PubMedCrossRef Samouelian V, Revillion F, Alloy N, Lhotellier V, Leblanc E, Peyrat JP. Measurement of mRNA of 11 biomarkers by RT-PCR to detect lymph node involvement in cervical cancer. Int J Biol Markers. 2008;23(2):74–82.PubMedCrossRef
23.
go back to reference Kong X, Ding LJ, Wang ZX. Mucin expression profile of benign and malignant cervical tissues and correlation with clinical-pathologic parameters. Eur J Gynaecol Oncol. 2017;38(3):350–5.PubMed Kong X, Ding LJ, Wang ZX. Mucin expression profile of benign and malignant cervical tissues and correlation with clinical-pathologic parameters. Eur J Gynaecol Oncol. 2017;38(3):350–5.PubMed
24.
go back to reference Ma S, Lu C-C, Yang L-Y, Wang J-J, Wang B-S, Cai H-Q, Hao J-J, Xu X, Cai Y, Zhang Y, et al. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. J Experimental Clin cancer Research: CR. 2018;37(1):183.PubMedCentralCrossRef Ma S, Lu C-C, Yang L-Y, Wang J-J, Wang B-S, Cai H-Q, Hao J-J, Xu X, Cai Y, Zhang Y, et al. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. J Experimental Clin cancer Research: CR. 2018;37(1):183.PubMedCentralCrossRef
25.
go back to reference Li Z, Pan Y, Yao J, Gao Y, Qian Y, Zheng M, Ma S. ANXA2 as a novel substrate of FBXW7 promoting esophageal squamous cell carcinoma via ERK phosphorylation. Biochem Biophys Res Commun. 2023;649:93–100.PubMedCrossRef Li Z, Pan Y, Yao J, Gao Y, Qian Y, Zheng M, Ma S. ANXA2 as a novel substrate of FBXW7 promoting esophageal squamous cell carcinoma via ERK phosphorylation. Biochem Biophys Res Commun. 2023;649:93–100.PubMedCrossRef
26.
go back to reference Zuñiga Martinez ML, López Mendoza CM, Tenorio Salazar J, García Carrancá AM. Cerbón Cervantes MA, Alcántara-Quintana LE: establishment, authenticity, and characterization of cervical cancer cell lines. Mol Cell Oncol. 2022;9(1):2078628.PubMedPubMedCentralCrossRef Zuñiga Martinez ML, López Mendoza CM, Tenorio Salazar J, García Carrancá AM. Cerbón Cervantes MA, Alcántara-Quintana LE: establishment, authenticity, and characterization of cervical cancer cell lines. Mol Cell Oncol. 2022;9(1):2078628.PubMedPubMedCentralCrossRef
27.
go back to reference Pan Y, Liu J, Gao Y, Guo Y, Wang C, Liang Z, Wu M, Qian Y, Li Y, Shen J, et al. FBXW7 loss of function promotes esophageal squamous cell carcinoma progression via elevating MAP4 and ERK phosphorylation. J Exp Clin Cancer Res. 2023;42(1):75.PubMedPubMedCentralCrossRef Pan Y, Liu J, Gao Y, Guo Y, Wang C, Liang Z, Wu M, Qian Y, Li Y, Shen J, et al. FBXW7 loss of function promotes esophageal squamous cell carcinoma progression via elevating MAP4 and ERK phosphorylation. J Exp Clin Cancer Res. 2023;42(1):75.PubMedPubMedCentralCrossRef
28.
go back to reference Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.PubMedPubMedCentralCrossRef Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.PubMedPubMedCentralCrossRef
29.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102.PubMedPubMedCentralCrossRef
30.
go back to reference Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, Shapira-Frommer R, Tawbi HA, Rubino J, Rush TS 3, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight. 2018;3(4):e92352.PubMedPubMedCentralCrossRef Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, Shapira-Frommer R, Tawbi HA, Rubino J, Rush TS 3, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight. 2018;3(4):e92352.PubMedPubMedCentralCrossRef
31.
go back to reference Bowden SJ, Doulgeraki T, Bouras E, Markozannes G, Athanasiou A, Grout-Smith H, Kechagias KS, Ellis LB, Zuber V, Chadeau-Hyam M, et al. Risk factors for human papillomavirus infection, cervical intraepithelial neoplasia and cervical cancer: an umbrella review and follow-up mendelian randomisation studies. BMC Med. 2023;21(1):274.PubMedPubMedCentralCrossRef Bowden SJ, Doulgeraki T, Bouras E, Markozannes G, Athanasiou A, Grout-Smith H, Kechagias KS, Ellis LB, Zuber V, Chadeau-Hyam M, et al. Risk factors for human papillomavirus infection, cervical intraepithelial neoplasia and cervical cancer: an umbrella review and follow-up mendelian randomisation studies. BMC Med. 2023;21(1):274.PubMedPubMedCentralCrossRef
32.
go back to reference Burki TK. Therapeutic HPV vaccine for cervical intraepithelial neoplasia. Lancet Oncol. 2019;20(5):e250.PubMedCrossRef Burki TK. Therapeutic HPV vaccine for cervical intraepithelial neoplasia. Lancet Oncol. 2019;20(5):e250.PubMedCrossRef
33.
go back to reference Tarique M, Naz H, Suhail M, Turan A, Saini C, Muhammad N, Shankar H, Zughaibi TA, Khan TH, Khanna N, et al. Differential expression of programmed death 1 (PD-1) on various immune cells and its role in human leprosy. Front Immunol. 2023;14:1138145.PubMedPubMedCentralCrossRef Tarique M, Naz H, Suhail M, Turan A, Saini C, Muhammad N, Shankar H, Zughaibi TA, Khan TH, Khanna N, et al. Differential expression of programmed death 1 (PD-1) on various immune cells and its role in human leprosy. Front Immunol. 2023;14:1138145.PubMedPubMedCentralCrossRef
34.
go back to reference Seyedsadr M, Wang Y, Elzoheiry M, Shree Gopal S, Jang S, Duran G, Chervoneva I, Kasimoglou E, Wrobel JA, Hwang D, et al. IL-11 induces NLRP3 inflammasome activation in monocytes and inflammatory cell migration to the central nervous system. Proc Natl Acad Sci U S A. 2023;120(26):e2221007120.PubMedPubMedCentralCrossRef Seyedsadr M, Wang Y, Elzoheiry M, Shree Gopal S, Jang S, Duran G, Chervoneva I, Kasimoglou E, Wrobel JA, Hwang D, et al. IL-11 induces NLRP3 inflammasome activation in monocytes and inflammatory cell migration to the central nervous system. Proc Natl Acad Sci U S A. 2023;120(26):e2221007120.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang X, Kiapour N, Kapoor S, Khan T, Thamilarasan M, Tao Y, Cohen S, Miller R, Sobel RA, Markovic-Plese S. IL-11 induces encephalitogenic Th17 cells in multiple sclerosis and experimental autoimmune encephalomyelitis. J Immunol. 2019;203(5):1142–50.PubMedPubMedCentralCrossRef Zhang X, Kiapour N, Kapoor S, Khan T, Thamilarasan M, Tao Y, Cohen S, Miller R, Sobel RA, Markovic-Plese S. IL-11 induces encephalitogenic Th17 cells in multiple sclerosis and experimental autoimmune encephalomyelitis. J Immunol. 2019;203(5):1142–50.PubMedPubMedCentralCrossRef
36.
go back to reference Mittal S, Ghosh I, Banerjee D, Singh P, Biswas J, Nijhawan R, Srinivasan R, Ray C, Basu P. Reproducibility of cervical intraepithelial neoplasia diagnosis on histological review of cervical punch biopsies from a visual inspection with acetic acid and HPV detection-based screening program. Int J Gynaecol Obstet. 2014;126(3):227–31.PubMedCrossRef Mittal S, Ghosh I, Banerjee D, Singh P, Biswas J, Nijhawan R, Srinivasan R, Ray C, Basu P. Reproducibility of cervical intraepithelial neoplasia diagnosis on histological review of cervical punch biopsies from a visual inspection with acetic acid and HPV detection-based screening program. Int J Gynaecol Obstet. 2014;126(3):227–31.PubMedCrossRef
37.
go back to reference Hwang H, Follen M, Guillaud M, Scheurer M, MacAulay C, MacAulay C, Staerkel GA, van Niekerk D, Yamal JM. Cervical cytology reproducibility and associated clinical and demographic factors. Diagn Cytopathol. 2020;48(1):35–42.PubMedCrossRef Hwang H, Follen M, Guillaud M, Scheurer M, MacAulay C, MacAulay C, Staerkel GA, van Niekerk D, Yamal JM. Cervical cytology reproducibility and associated clinical and demographic factors. Diagn Cytopathol. 2020;48(1):35–42.PubMedCrossRef
38.
go back to reference Williams A. Cervical cancer: what’s new in squamous cell neoplasia. Diagn Histopathology. 2021;27(12):478–82.CrossRef Williams A. Cervical cancer: what’s new in squamous cell neoplasia. Diagn Histopathology. 2021;27(12):478–82.CrossRef
39.
go back to reference Volesky KD, El-Zein M, Franco EL, Brenner DR, Friedenreich CM, Ruan Y. Cancers attributable to infections in Canada. Prev Med. 2019;122:109–17.PubMedCrossRef Volesky KD, El-Zein M, Franco EL, Brenner DR, Friedenreich CM, Ruan Y. Cancers attributable to infections in Canada. Prev Med. 2019;122:109–17.PubMedCrossRef
40.
go back to reference Hisamuddin M, Rizvi I, Malik A, Nabi F, Hassan MN, Ali SM, Khan JM, Khan TH, Khan RH. Characterization of pH-induced conformational changes in recombinant DENV NS2B-NS3pro. Int J Biol Macromol. 2023;253(Pt 3):126823.PubMedCrossRef Hisamuddin M, Rizvi I, Malik A, Nabi F, Hassan MN, Ali SM, Khan JM, Khan TH, Khan RH. Characterization of pH-induced conformational changes in recombinant DENV NS2B-NS3pro. Int J Biol Macromol. 2023;253(Pt 3):126823.PubMedCrossRef
41.
go back to reference Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as potential biomarkers for early detection of Cancer. Cancers (Basel) 2023, 15(6). Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as potential biomarkers for early detection of Cancer. Cancers (Basel) 2023, 15(6).
42.
go back to reference Attallah AM, El-Far M, Ibrahim AR, El-Desouky MA, Omran MM, Elbendary MS, Attallah KA, Qura ER, Abdallah SO. Clinical value of a diagnostic score for colon cancer based on serum CEA, CA19-9, cytokeratin-1 and mucin-1. Br J Biomed Sci. 2018;75(3):122–7.PubMedCrossRef Attallah AM, El-Far M, Ibrahim AR, El-Desouky MA, Omran MM, Elbendary MS, Attallah KA, Qura ER, Abdallah SO. Clinical value of a diagnostic score for colon cancer based on serum CEA, CA19-9, cytokeratin-1 and mucin-1. Br J Biomed Sci. 2018;75(3):122–7.PubMedCrossRef
43.
go back to reference Buisine MP, Devisme L, Copin MC, Durand-Réville M, Gosselin B, Aubert JP, Porchet N. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol. 1999;20(2):209–18.PubMedCrossRef Buisine MP, Devisme L, Copin MC, Durand-Réville M, Gosselin B, Aubert JP, Porchet N. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol. 1999;20(2):209–18.PubMedCrossRef
44.
go back to reference Munro EG, Jain M, Oliva E, Kamal N, Lele SM, Lynch MP, Guo L, Fu K, Sharma P, Remmenga S, et al. Upregulation of MUC4 in cervical squamous cell carcinoma: pathologic significance. Int J Gynecol Pathol. 2009;28(2):127–33.PubMedPubMedCentralCrossRef Munro EG, Jain M, Oliva E, Kamal N, Lele SM, Lynch MP, Guo L, Fu K, Sharma P, Remmenga S, et al. Upregulation of MUC4 in cervical squamous cell carcinoma: pathologic significance. Int J Gynecol Pathol. 2009;28(2):127–33.PubMedPubMedCentralCrossRef
45.
go back to reference Malinda RR, Zeeberg K, Sharku PC, Ludwig MQ, Pedersen LB, Christensen ST, Pedersen SF. TGFβ signaling increases net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer cells: SMAD4 dependence and link to Merlin/NF2 Signaling. Front Oncol. 2020;10:687.PubMedPubMedCentralCrossRef Malinda RR, Zeeberg K, Sharku PC, Ludwig MQ, Pedersen LB, Christensen ST, Pedersen SF. TGFβ signaling increases net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer cells: SMAD4 dependence and link to Merlin/NF2 Signaling. Front Oncol. 2020;10:687.PubMedPubMedCentralCrossRef
46.
go back to reference Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SI, et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene. 2011;30(12):1449–59.PubMedCrossRef Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SI, et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene. 2011;30(12):1449–59.PubMedCrossRef
47.
go back to reference Khan TH, Srivastava N, Srivastava A, Sareen A, Mathur RK, Chande AG, Musti KV, Roy S, Mukhopadhyaya R, Saha B. SHP-1 plays a crucial role in CD40 signaling reciprocity. J Immunol (Baltimore Md: 1950). 2014;193(7):3644–53.CrossRef Khan TH, Srivastava N, Srivastava A, Sareen A, Mathur RK, Chande AG, Musti KV, Roy S, Mukhopadhyaya R, Saha B. SHP-1 plays a crucial role in CD40 signaling reciprocity. J Immunol (Baltimore Md: 1950). 2014;193(7):3644–53.CrossRef
48.
go back to reference Hiraki M, Maeda T, Mehrotra N, Jin C, Alam M, Bouillez A, Hata T, Tagde A, Keating A, Kharbanda S, et al. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer. Signal Transduct Target Ther. 2018;3:13.PubMedPubMedCentralCrossRef Hiraki M, Maeda T, Mehrotra N, Jin C, Alam M, Bouillez A, Hata T, Tagde A, Keating A, Kharbanda S, et al. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer. Signal Transduct Target Ther. 2018;3:13.PubMedPubMedCentralCrossRef
49.
go back to reference Haratake N, Ozawa H, Morimoto Y, Yamashita N, Daimon T, Bhattacharya A, Wang K, Nakashoji A, Isozaki H, Shimokawa M et al. MUC1-C is a common driver of Acquired Osimertinib Resistance in NSCLC. J Thorac Oncol 2023. Haratake N, Ozawa H, Morimoto Y, Yamashita N, Daimon T, Bhattacharya A, Wang K, Nakashoji A, Isozaki H, Shimokawa M et al. MUC1-C is a common driver of Acquired Osimertinib Resistance in NSCLC. J Thorac Oncol 2023.
50.
go back to reference Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem. 2003;278(5):3386–94.PubMedCrossRef Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem. 2003;278(5):3386–94.PubMedCrossRef
53.
go back to reference Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS, Kim CW. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 2012;31(17):2187–98.PubMedCrossRef Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS, Kim CW. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 2012;31(17):2187–98.PubMedCrossRef
54.
go back to reference Bozkaya G, Korhan P, Cokaklı M, Erdal E, Sağol O, Karademir S, Korch C, Atabey N. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol Cancer. 2012;11:64.PubMedPubMedCentralCrossRef Bozkaya G, Korhan P, Cokaklı M, Erdal E, Sağol O, Karademir S, Korch C, Atabey N. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol Cancer. 2012;11:64.PubMedPubMedCentralCrossRef
55.
go back to reference Cooper J, Giancotti FG. Integrin signaling in Cancer: mechanotransduction, stemness, epithelial plasticity, and Therapeutic Resistance. Cancer Cell. 2019;35(3):347–67.PubMedPubMedCentralCrossRef Cooper J, Giancotti FG. Integrin signaling in Cancer: mechanotransduction, stemness, epithelial plasticity, and Therapeutic Resistance. Cancer Cell. 2019;35(3):347–67.PubMedPubMedCentralCrossRef
56.
go back to reference Ma L, Sun Y, Li D, Li H, Jin X, Ren D. Overexpressed ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the activation of the AKT/FoxO1 pathway. Aging. 2020;12(6):5336–51.PubMedPubMedCentralCrossRef Ma L, Sun Y, Li D, Li H, Jin X, Ren D. Overexpressed ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the activation of the AKT/FoxO1 pathway. Aging. 2020;12(6):5336–51.PubMedPubMedCentralCrossRef
57.
go back to reference Zhu T, Chen R, Wang J, Yue H, Lu X, Li J. The prognostic value of ITGA and ITGB superfamily members in patients with high grade serous ovarian cancer. Cancer Cell Int. 2020;20:257.PubMedPubMedCentralCrossRef Zhu T, Chen R, Wang J, Yue H, Lu X, Li J. The prognostic value of ITGA and ITGB superfamily members in patients with high grade serous ovarian cancer. Cancer Cell Int. 2020;20:257.PubMedPubMedCentralCrossRef
58.
go back to reference Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 is Associated with Immune Cell Infiltration and serves as a favorable prognostic biomarker for breast Cancer. Front Oncol. 2021;11:658547.PubMedPubMedCentralCrossRef Li Y, Li F, Bai X, Li Y, Ni C, Zhao X, Zhang D. ITGA3 is Associated with Immune Cell Infiltration and serves as a favorable prognostic biomarker for breast Cancer. Front Oncol. 2021;11:658547.PubMedPubMedCentralCrossRef
59.
go back to reference Zhang H, Cui X, Cao A, Li X, Li L. ITGA3 interacts with VASP to regulate stemness and epithelial-mesenchymal transition of breast cancer cells. Gene. 2020;734:144396.PubMedCrossRef Zhang H, Cui X, Cao A, Li X, Li L. ITGA3 interacts with VASP to regulate stemness and epithelial-mesenchymal transition of breast cancer cells. Gene. 2020;734:144396.PubMedCrossRef
60.
go back to reference Jin W, Liao X, Lv Y, Pang Z, Wang Y, Li Q, Liao Y, Ye Q, Chen G, Zhao K, et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis. 2017;8(8):e2980.PubMedPubMedCentralCrossRef Jin W, Liao X, Lv Y, Pang Z, Wang Y, Li Q, Liao Y, Ye Q, Chen G, Zhao K, et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis. 2017;8(8):e2980.PubMedPubMedCentralCrossRef
61.
go back to reference Kalra AV, Campbell RB. Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours. Eur J Cancer. 2009;45(1):164–73.PubMedCrossRef Kalra AV, Campbell RB. Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours. Eur J Cancer. 2009;45(1):164–73.PubMedCrossRef
62.
go back to reference Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32(1):71–e8777.PubMedPubMedCentralCrossRef Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32(1):71–e8777.PubMedPubMedCentralCrossRef
Metadata
Title
MUC1 promotes cervical squamous cell carcinoma through ERK phosphorylation-mediated regulation of ITGA2/ITGA3
Authors
Aiqin Zhao
Yunzhi Pan
Yingyin Gao
Zheng Zhi
Haiying Lu
Bei Dong
Xuan Zhang
Meiying Wu
Fenxia Zhu
Sufang Zhou
Sai Ma
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12314-6

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine