Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2020

Open Access 01-12-2020 | Central Nervous System Trauma | Research article

Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study

Authors: Luis Serviá, Neus Montserrat, Mariona Badia, Juan Antonio Llompart-Pou, Jesús Abelardo Barea-Mendoza, Mario Chico-Fernández, Marcelino Sánchez-Casado, José Manuel Jiménez, Dolores María Mayor, Javier Trujillano

Published in: BMC Medical Research Methodology | Issue 1/2020

Login to get access

Abstract

Background

Interest in models for calculating the risk of death in traumatic patients admitted to ICUs remains high. These models use variables derived from the deviation of physiological parameters and/or the severity of anatomical lesions with respect to the affected body areas. Our objective is to create different predictive models of the mortality of critically traumatic patients using machine learning techniques.

Methods

We used 9625 records from the RETRAUCI database (National Trauma Registry of 52 Spanish ICUs in the period of 2015–2019). Hospital mortality was 12.6%. Data on demographic variables, affected anatomical areas and physiological repercussions were used. The Weka Platform was used, along with a ten-fold cross-validation for the construction of nine supervised algorithms: logistic regression binary (LR), neural network (NN), sequential minimal optimization (SMO), classification rules (JRip), classification trees (CT), Bayesian networks (BN), adaptive boosting (ADABOOST), bootstrap aggregating (BAGGING) and random forest (RFOREST). The performance of the models was evaluated by accuracy, specificity, precision, recall, F-measure, and AUC.

Results

In all algorithms, the most important factors are those associated with traumatic brain injury (TBI) and organic failures. The LR finds thorax and limb injuries as independent protective factors of mortality. The CT generates 24 decision rules and uses those related to TBI as the first variables (range 2.0–81.6%). The JRip detects the eight rules with the highest risk of mortality (65.0–94.1%). The NN model uses a hidden layer of ten nodes, which requires 200 weights for its interpretation. The BN find the relationships between the different factors that identify different patient profiles. Models with the ensemble methodology (ADABOOST, BAGGING and RandomForest) do not have greater performance. All models obtain high values ​​in accuracy, specificity, and AUC, but obtain lower values ​​in recall. The greatest precision is achieved by the SMO model, and the BN obtains the best recall, F-measure, and AUC.

Conclusion

Machine learning techniques are useful for creating mortality classification models in critically traumatic patients. With clinical interpretation, the algorithms establish different patient profiles according to the relationship between the variables used, determine groups of patients with different evolutions, and alert clinicians to the presence of rules that indicate the greatest severity.
Literature
1.
go back to reference de Munter L, Polinder S, Lansink KW, et al. Mortality prediction models in the general trauma population: a systematic review. Injury. 2017;48:221–9.CrossRefPubMed de Munter L, Polinder S, Lansink KW, et al. Mortality prediction models in the general trauma population: a systematic review. Injury. 2017;48:221–9.CrossRefPubMed
3.
4.
go back to reference Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME. A revision of the trauma score. J Trauma. 1989;29:623–9.CrossRefPubMed Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME. A revision of the trauma score. J Trauma. 1989;29:623–9.CrossRefPubMed
5.
go back to reference Chico-Fernández M, Sánchez-Casado M, Llompart-Pou JA. Trauma registry in Spain. Comment to "trauma systems around the world: a systematic overview". J Trauma Acute Care Surg. 2018;84(1):217–8.CrossRefPubMed Chico-Fernández M, Sánchez-Casado M, Llompart-Pou JA. Trauma registry in Spain. Comment to "trauma systems around the world: a systematic overview". J Trauma Acute Care Surg. 2018;84(1):217–8.CrossRefPubMed
6.
go back to reference Ma H, Xu CF, Shen Z, Yu CH, Li YM. Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China. Biomed Res Int. 2018;2018:4304376.PubMedPubMedCentral Ma H, Xu CF, Shen Z, Yu CH, Li YM. Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China. Biomed Res Int. 2018;2018:4304376.PubMedPubMedCentral
7.
go back to reference Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.CrossRefPubMedPubMedCentral Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323.CrossRefPubMedPubMedCentral
8.
go back to reference Deist TM, Dankers FJWM, Valdes G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45(7):3449–59.CrossRefPubMed Deist TM, Dankers FJWM, Valdes G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45(7):3449–59.CrossRefPubMed
9.
go back to reference Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20(15):2479–81.CrossRefPubMed Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20(15):2479–81.CrossRefPubMed
10.
go back to reference Gómez D, Rojas A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification. Neural Comput. 2016;28(1):216–28.CrossRefPubMed Gómez D, Rojas A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification. Neural Comput. 2016;28(1):216–28.CrossRefPubMed
11.
go back to reference Pourhoseingholi MA, Kheirian S, Zali MR. Comparison of basic and ensemble data mining methods in predicting 5-year survival of colorectal Cancer patients. Acta Inform Med. 2017;25(4):254–8.CrossRefPubMedPubMedCentral Pourhoseingholi MA, Kheirian S, Zali MR. Comparison of basic and ensemble data mining methods in predicting 5-year survival of colorectal Cancer patients. Acta Inform Med. 2017;25(4):254–8.CrossRefPubMedPubMedCentral
12.
go back to reference Zador Z, Sperrin M, King AT. Predictors of outcome in traumatic brain injury: new insight using receiver operating curve indices and Bayesian network analysis. PLoS One. 2016;11(7):e0158762.CrossRefPubMedPubMedCentral Zador Z, Sperrin M, King AT. Predictors of outcome in traumatic brain injury: new insight using receiver operating curve indices and Bayesian network analysis. PLoS One. 2016;11(7):e0158762.CrossRefPubMedPubMedCentral
13.
go back to reference Chico-Fernández M, Llompart-Pou JA, Guerrero-López F, et al. Epidemiology of severe trauma in Spain. Registry of trauma in the ICU (RETRAUCI). Pilot phase. Med Int. 2016;40(6):327–47. Chico-Fernández M, Llompart-Pou JA, Guerrero-López F, et al. Epidemiology of severe trauma in Spain. Registry of trauma in the ICU (RETRAUCI). Pilot phase. Med Int. 2016;40(6):327–47.
14.
go back to reference Llau JV, Acosta FJ, Escolar G, et al. Multidisciplinary consensus document on the management of massive haemorrhage (HEMOMAS document). Med Intensiva. 2015;39(8):483–504 O.CrossRefPubMed Llau JV, Acosta FJ, Escolar G, et al. Multidisciplinary consensus document on the management of massive haemorrhage (HEMOMAS document). Med Intensiva. 2015;39(8):483–504 O.CrossRefPubMed
15.
go back to reference Søvik S, Isachsen MS, Nordhuus KM, et al. Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. Intensive Care Med. 2019;45(4):407–19.CrossRefPubMed Søvik S, Isachsen MS, Nordhuus KM, et al. Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis. Intensive Care Med. 2019;45(4):407–19.CrossRefPubMed
16.
go back to reference Spahn DR, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019;23(1):98.CrossRefPubMedPubMedCentral Spahn DR, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019;23(1):98.CrossRefPubMedPubMedCentral
17.
go back to reference Gnanambal S, Thangaraj M, Meenatchi VT, Gayathri V. Classification algorithms with attribute selection: an evaluation study using WEKA. Int J Advanced Networking Applications. 2018;9(6):3640–4. Gnanambal S, Thangaraj M, Meenatchi VT, Gayathri V. Classification algorithms with attribute selection: an evaluation study using WEKA. Int J Advanced Networking Applications. 2018;9(6):3640–4.
18.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software. ACM SIGKDD Explor Newslett. 2009;11:10.CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software. ACM SIGKDD Explor Newslett. 2009;11:10.CrossRef
19.
go back to reference Trujillano J, Badia M, Serviá L, March J, Rodriguez-Pozo A. Stratification of the severity of critically ill patients with classification trees. BMC Med Res Methodol. 2009;9:83.CrossRefPubMedPubMedCentral Trujillano J, Badia M, Serviá L, March J, Rodriguez-Pozo A. Stratification of the severity of critically ill patients with classification trees. BMC Med Res Methodol. 2009;9:83.CrossRefPubMedPubMedCentral
20.
go back to reference Rajput A, Prasad R, Dubey M, Saxena SP, Raghuvanshi M. J48 and JRIP rules for E-governance data. IJCSS. 2011;5(2):201–7. Rajput A, Prasad R, Dubey M, Saxena SP, Raghuvanshi M. J48 and JRIP rules for E-governance data. IJCSS. 2011;5(2):201–7.
21.
go back to reference Banu AB. Thirumalaikolundusubramanian P. comparison of Bayes classifiers for breast Cancer classification. Asian Pac J Cancer Prev. 2018;19(10):2917–20. Banu AB. Thirumalaikolundusubramanian P. comparison of Bayes classifiers for breast Cancer classification. Asian Pac J Cancer Prev. 2018;19(10):2917–20.
22.
go back to reference Friedman N, Geiger D, Goldszmidt M. Bayesian networks classifiers. Mach Learn. 1997;29:131–63.CrossRef Friedman N, Geiger D, Goldszmidt M. Bayesian networks classifiers. Mach Learn. 1997;29:131–63.CrossRef
23.
go back to reference Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Biophys Acta Mol Basis Dis. 2018;1864(6 Pt B):2255–65.CrossRefPubMed Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Biophys Acta Mol Basis Dis. 2018;1864(6 Pt B):2255–65.CrossRefPubMed
24.
go back to reference Lee KH, Dong JJ, Jeong SJ, et al. Early detection of Bacteraemia using ten clinical variables with an artificial neural network approach. J Clin Med. 2019;8(10):1592.CrossRefPubMedCentral Lee KH, Dong JJ, Jeong SJ, et al. Early detection of Bacteraemia using ten clinical variables with an artificial neural network approach. J Clin Med. 2019;8(10):1592.CrossRefPubMedCentral
25.
go back to reference Wang HL, Hsu WY, Lee MH, et al. Automatic machine-learning-based outcome prediction in patients with primary Intracerebral hemorrhage. Front Neurol. 2019;10:910.CrossRefPubMedPubMedCentral Wang HL, Hsu WY, Lee MH, et al. Automatic machine-learning-based outcome prediction in patients with primary Intracerebral hemorrhage. Front Neurol. 2019;10:910.CrossRefPubMedPubMedCentral
26.
go back to reference Somnay YR, Craven M, McCoy KL, et al. Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery. 2017;161(4):1113–21.CrossRefPubMed Somnay YR, Craven M, McCoy KL, et al. Improving diagnostic recognition of primary hyperparathyroidism with machine learning. Surgery. 2017;161(4):1113–21.CrossRefPubMed
27.
go back to reference Chico-Fernández M, Llompart-Pou JA, Sánchez-Casado M, et al. Mortality prediction using TRISS methodology in the Spanish ICU trauma registry (RETRAUCI). Med Int. 2016;40(7):395–402. Chico-Fernández M, Llompart-Pou JA, Sánchez-Casado M, et al. Mortality prediction using TRISS methodology in the Spanish ICU trauma registry (RETRAUCI). Med Int. 2016;40(7):395–402.
28.
go back to reference DiMaggio CJ, Avraham JB, Lee DC, Frangos SG, Wall SP. The epidemiology of emergency department trauma discharges in the United States. Acad Emerg Med. 2017;24(10):1244–56.CrossRefPubMedPubMedCentral DiMaggio CJ, Avraham JB, Lee DC, Frangos SG, Wall SP. The epidemiology of emergency department trauma discharges in the United States. Acad Emerg Med. 2017;24(10):1244–56.CrossRefPubMedPubMedCentral
30.
go back to reference Shillan D, Sterne JAC, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284.CrossRefPubMedPubMedCentral Shillan D, Sterne JAC, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284.CrossRefPubMedPubMedCentral
31.
go back to reference Smith TC, Frank E. Introducing machine learning concepts with WEKA. Methods Mol Biol. 2016;1418:353–78.CrossRefPubMed Smith TC, Frank E. Introducing machine learning concepts with WEKA. Methods Mol Biol. 2016;1418:353–78.CrossRefPubMed
32.
go back to reference Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192.CrossRefPubMedPubMedCentral Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192.CrossRefPubMedPubMedCentral
33.
go back to reference Fröhlich M, Lefering R, Probst C, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–8.CrossRefPubMed Fröhlich M, Lefering R, Probst C, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–8.CrossRefPubMed
34.
go back to reference Llompart-Pou JA, Chico-Fernández M, Sánchez-Casado M, et al. Age-related injury patterns in Spanish trauma ICU patients. Results from the RETRAUCI. Injury. 2016;47(Suppl 3):S61–5.CrossRefPubMed Llompart-Pou JA, Chico-Fernández M, Sánchez-Casado M, et al. Age-related injury patterns in Spanish trauma ICU patients. Results from the RETRAUCI. Injury. 2016;47(Suppl 3):S61–5.CrossRefPubMed
35.
go back to reference Lin FC, Tsai SC, Li RY, Chen HC, Tung YW, Chou MC. Factors associated with intensive care unit admission in patients with traumatic thoracic injury. J Int Med Res. 2013;41(4):1310–7.CrossRefPubMed Lin FC, Tsai SC, Li RY, Chen HC, Tung YW, Chou MC. Factors associated with intensive care unit admission in patients with traumatic thoracic injury. J Int Med Res. 2013;41(4):1310–7.CrossRefPubMed
36.
go back to reference Serviá L, Badia M, Montserrat N, Trujillano J. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models. Med Int. 2019;43(1):26–34. Serviá L, Badia M, Montserrat N, Trujillano J. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models. Med Int. 2019;43(1):26–34.
37.
go back to reference Zampieri FG, Aguiar FJ, Bozza FA, Salluh JIF, Soares M, ORCHESTRA Study Investigators. Modulators of systemic inflammatory response syndrome presence in patients admitted to intensive care units with acute infection: a Bayesian network approach. Intensive Care Med. 2019;45(8):1156–8.CrossRefPubMed Zampieri FG, Aguiar FJ, Bozza FA, Salluh JIF, Soares M, ORCHESTRA Study Investigators. Modulators of systemic inflammatory response syndrome presence in patients admitted to intensive care units with acute infection: a Bayesian network approach. Intensive Care Med. 2019;45(8):1156–8.CrossRefPubMed
38.
go back to reference Gholipour C, Rahim F, Fakhree A, Ziapour B. Using an artificial neural networks (ANNs) model for prediction of intensive care unit (ICU) outcome and length of stay at Hospital in Traumatic Patients. J Clin Diagn Res. 2015;9(4):OC19–23.PubMedPubMedCentral Gholipour C, Rahim F, Fakhree A, Ziapour B. Using an artificial neural networks (ANNs) model for prediction of intensive care unit (ICU) outcome and length of stay at Hospital in Traumatic Patients. J Clin Diagn Res. 2015;9(4):OC19–23.PubMedPubMedCentral
39.
go back to reference Hosni M, Abnane I, Idri A. Carrillo de Gea JM, Fernández Alemán JL. Reviewing ensemble classification methods in breast cancer. Comput Methods Prog Biomed. 2019;177:89–112.CrossRef Hosni M, Abnane I, Idri A. Carrillo de Gea JM, Fernández Alemán JL. Reviewing ensemble classification methods in breast cancer. Comput Methods Prog Biomed. 2019;177:89–112.CrossRef
40.
go back to reference Sandri M, Berchialla P, Baldi I, Gregori D, De Blasi RA. Dynamic Bayesian networks to predict sequences of organ failures in patients admitted to ICU. J Biomed Inform. 2014;48:106–13.CrossRefPubMed Sandri M, Berchialla P, Baldi I, Gregori D, De Blasi RA. Dynamic Bayesian networks to predict sequences of organ failures in patients admitted to ICU. J Biomed Inform. 2014;48:106–13.CrossRefPubMed
41.
go back to reference Sierra B, Serrano N, Larrañaga P, et al. Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patient’s data. Artif Intell Med. 2001;22(3):233–48.CrossRefPubMed Sierra B, Serrano N, Larrañaga P, et al. Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patient’s data. Artif Intell Med. 2001;22(3):233–48.CrossRefPubMed
Metadata
Title
Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study
Authors
Luis Serviá
Neus Montserrat
Mariona Badia
Juan Antonio Llompart-Pou
Jesús Abelardo Barea-Mendoza
Mario Chico-Fernández
Marcelino Sánchez-Casado
José Manuel Jiménez
Dolores María Mayor
Javier Trujillano
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2020
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-020-01151-3

Other articles of this Issue 1/2020

BMC Medical Research Methodology 1/2020 Go to the issue