Skip to main content
Top
Published in: BMC Neurology 1/2021

Open Access 01-12-2021 | Central Nervous System Trauma | Research

Sex and age differences in isolated traumatic brain injury: a retrospective observational study

Authors: Sanae Hosomi, Tetsuhisa Kitamura, Tomotaka Sobue, Hiroshi Ogura, Takeshi Shimazu

Published in: BMC Neurology | Issue 1/2021

Login to get access

Abstract

Background

Among the many factors that may influence traumatic brain injury (TBI) progression, sex is one of the most controversial. The objective of this study was to investigate sex differences in TBI-associated morbidity and mortality using data from the largest trauma registry in Japan.

Methods

This retrospective, population-based observational study included patients with isolated TBI, who were registered in a nationwide database between 2004 and 2018. We excluded patients with extracranial injury (Abbreviated Injury Scale score ≥ 3) and removed potential confounding factors, such as non-neurological causes of mortality. Patients were stratified by age and mortality and post-injury complications were compared between males and females.

Results

A total of 51,726 patients with isolated TBI were included (16,901 females and 34,825 males). Mortality across all ages was documented in 12.01% (2030/16901) and 12.76% (4445/34825) of males and females, respectively. The adjusted odds ratio (OR) of TBI mortality for males compared to females was 1.32 (95% confidence interval [CI], 1.22–1.42]. Males aged 10–19 years and ≥ 60 years had a significantly higher mortality than females in the same age groups (10–19 years: adjusted OR, 1.97 [95% CI, 1.08–3.61]; 60–69 years: adjusted OR, 1.24 [95% CI, 1.02–1.50]; 70–79 years: adjusted OR, 1.20 [95% CI, 1.03–1.40]; 80–89 years: adjusted OR, 1.50 [95% CI, 1.31–1.73], and 90–99 years: adjusted OR, 1.72 [95% CI, 1.28–2.32]). In terms of the incidence of post-TBI neurologic and non-neurologic complications, the crude ORs were 1.29 (95% CI, 1.19–1.39) and 1.14 (95% CI, 1.07–1.22), respectively, for males versus females. This difference was especially evident among elderly patients (neurologic complications: OR, 1.27 [95% CI, 1.14–1.41]; non-neurologic complications: OR, 1.29 [95% CI, 1.19–1.39]).

Conclusions

In a nationwide sample of patients with TBI in Japan, males had a higher mortality than females. This disparity was particularly evident among younger and older generations. Furthermore, elderly males experienced more TBI complications than females of the same age.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9:231–6.PubMedCrossRef Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9:231–6.PubMedCrossRef
2.
go back to reference Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1:e76-83.PubMedCrossRef Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1:e76-83.PubMedCrossRef
3.
go back to reference Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex differences in traumatic brain injury: what we know and what we should know. J Neurotrauma. 2019;36:3063–91.PubMedPubMedCentralCrossRef Gupte R, Brooks W, Vukas R, Pierce J, Harris J. Sex differences in traumatic brain injury: what we know and what we should know. J Neurotrauma. 2019;36:3063–91.PubMedPubMedCentralCrossRef
4.
go back to reference Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities. Nat Rev Neurol. 2018;14:711–22.PubMedCrossRef Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities. Nat Rev Neurol. 2018;14:711–22.PubMedCrossRef
6.
go back to reference Berry C, Ley EJ, Tillou A, Cryer G, Margulies DR, Salim A. The effect of gender on patients with moderate to severe head injuries. J Trauma. 2009;67:950–3.PubMed Berry C, Ley EJ, Tillou A, Cryer G, Margulies DR, Salim A. The effect of gender on patients with moderate to severe head injuries. J Trauma. 2009;67:950–3.PubMed
7.
go back to reference Tachino J, Katayama Y, Kitamura T, Kiyohara K, Nakao S, Umemura Y, et al. Assessment of the interaction effect between injury regions in multiple injuries: a nationwide cohort study in Japan. J Trauma Acute Care Surg. 2021;90:185–90.PubMedCrossRef Tachino J, Katayama Y, Kitamura T, Kiyohara K, Nakao S, Umemura Y, et al. Assessment of the interaction effect between injury regions in multiple injuries: a nationwide cohort study in Japan. J Trauma Acute Care Surg. 2021;90:185–90.PubMedCrossRef
8.
go back to reference The abbreviated injury scale, 1990 revision, Update 98. Barrington: Association for the Advancement of Automatic Medicine; 2001. The abbreviated injury scale, 1990 revision, Update 98. Barrington: Association for the Advancement of Automatic Medicine; 2001.
9.
go back to reference Härtl R, Gerber LM, Iacono L, Ni Q, Lyons K, Ghajar J. Direct transport within an organized state trauma system reduces mortality in patients with severe traumatic brain injury. J Trauma. 2006;60:1250–6.PubMedCrossRef Härtl R, Gerber LM, Iacono L, Ni Q, Lyons K, Ghajar J. Direct transport within an organized state trauma system reduces mortality in patients with severe traumatic brain injury. J Trauma. 2006;60:1250–6.PubMedCrossRef
10.
go back to reference Katayama Y, Kitamura T, Hirose T, Kiguchi T, Matsuyama T, Takahashi H, et al. Pelvic angiography is effective for emergency pediatric patients with pelvic fractures: a propensity-score-matching study with a nationwide trauma registry in Japan. Eur J Trauma Emerg Surg. 2021;47:515-f21.PubMedCrossRef Katayama Y, Kitamura T, Hirose T, Kiguchi T, Matsuyama T, Takahashi H, et al. Pelvic angiography is effective for emergency pediatric patients with pelvic fractures: a propensity-score-matching study with a nationwide trauma registry in Japan. Eur J Trauma Emerg Surg. 2021;47:515-f21.PubMedCrossRef
12.
go back to reference Tohme S, Delhumeau C, Zuercher M, Haller G, Walder B. Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study. Scand J Trauma Resusc Emerg Med. 2014;22:1.PubMedPubMedCentralCrossRef Tohme S, Delhumeau C, Zuercher M, Haller G, Walder B. Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study. Scand J Trauma Resusc Emerg Med. 2014;22:1.PubMedPubMedCentralCrossRef
13.
go back to reference Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLOS Med. 2008;5:e165.PubMedPubMedCentralCrossRef Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLOS Med. 2008;5:e165.PubMedPubMedCentralCrossRef
14.
go back to reference Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, et al. STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology STROBE-ME: an extension of the STROBE statement. J Clin Epidemiol. 2011;64:1350–63.PubMedCrossRef Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, et al. STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology STROBE-ME: an extension of the STROBE statement. J Clin Epidemiol. 2011;64:1350–63.PubMedCrossRef
15.
go back to reference Bayir H, Marion DW, Puccio AM, Wisniewski SR, Janesko KL, Clark RS, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma. 2004;21:1–8.PubMedCrossRef Bayir H, Marion DW, Puccio AM, Wisniewski SR, Janesko KL, Clark RS, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma. 2004;21:1–8.PubMedCrossRef
16.
go back to reference Farace E, Alves WM. Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg. 2000;93:539–45.PubMedCrossRef Farace E, Alves WM. Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg. 2000;93:539–45.PubMedCrossRef
17.
go back to reference Wagner AK, Sasser HC, Hammond FM, Wiercisiewski D, Alexander J. Intentional traumatic brain injury: epidemiology, risk factors, and associations with injury severity and mortality. J Trauma. 2000;49:404–10.PubMedCrossRef Wagner AK, Sasser HC, Hammond FM, Wiercisiewski D, Alexander J. Intentional traumatic brain injury: epidemiology, risk factors, and associations with injury severity and mortality. J Trauma. 2000;49:404–10.PubMedCrossRef
18.
go back to reference Brazinova A, Mauritz W, Leitgeb J, Wilbacher I, Majdan M, Janciak I, et al. Outcomes of patients with severe traumatic brain injury who have Glasgow Coma Scale scores of 3 or 4 and are over 65 years old. J Neurotrauma. 2010;27:1549–55.PubMedCrossRef Brazinova A, Mauritz W, Leitgeb J, Wilbacher I, Majdan M, Janciak I, et al. Outcomes of patients with severe traumatic brain injury who have Glasgow Coma Scale scores of 3 or 4 and are over 65 years old. J Neurotrauma. 2010;27:1549–55.PubMedCrossRef
19.
go back to reference Davis DP, Douglas DJ, Smith W, Sise MJ, Vilke GM, Holbrook TL, et al. Traumatic brain injury outcomes in pre- and post-menopausal females versus age-matched males. J Neurotrauma. 2006;23:140–8.PubMedCrossRef Davis DP, Douglas DJ, Smith W, Sise MJ, Vilke GM, Holbrook TL, et al. Traumatic brain injury outcomes in pre- and post-menopausal females versus age-matched males. J Neurotrauma. 2006;23:140–8.PubMedCrossRef
20.
go back to reference Leitgeb J, Mauritz W, Brazinova A, Janciak I, Majdan M, Wilbacher I, et al. Effects of gender on outcomes after traumatic brain injury. J Trauma. 2011;71:1620–6.PubMed Leitgeb J, Mauritz W, Brazinova A, Janciak I, Majdan M, Wilbacher I, et al. Effects of gender on outcomes after traumatic brain injury. J Trauma. 2011;71:1620–6.PubMed
21.
go back to reference Dams-O’Connor K, Cuthbert JP, Whyte J, Corrigan JD, Faul M, Harrison-Felix C. Traumatic brain injury among older adults at level I and II trauma centers. J Neurotrauma. 2013;30:2001–13.PubMedPubMedCentralCrossRef Dams-O’Connor K, Cuthbert JP, Whyte J, Corrigan JD, Faul M, Harrison-Felix C. Traumatic brain injury among older adults at level I and II trauma centers. J Neurotrauma. 2013;30:2001–13.PubMedPubMedCentralCrossRef
22.
go back to reference Scheetz LJ. Injury patterns, severity and outcomes among older adults who sustained brain injury following a same level fall: a retrospective analysis. Int Emerg Nurs. 2015;23:162–7.PubMedCrossRef Scheetz LJ. Injury patterns, severity and outcomes among older adults who sustained brain injury following a same level fall: a retrospective analysis. Int Emerg Nurs. 2015;23:162–7.PubMedCrossRef
23.
go back to reference Stewart RM, Myers JG, Dent DL, Ermis P, Gray GA, Villarreal R, et al. Seven hundred fifty-three consecutive deaths in a Level I Trauma Center: the argument for injury prevention. J Trauma. 2003;54:66–70.PubMedCrossRef Stewart RM, Myers JG, Dent DL, Ermis P, Gray GA, Villarreal R, et al. Seven hundred fifty-three consecutive deaths in a Level I Trauma Center: the argument for injury prevention. J Trauma. 2003;54:66–70.PubMedCrossRef
24.
go back to reference Lee TT, Galarza M, Villanueva PA. Diffuse axonal injury (DAI) is not associated with elevated intracranial pressure (ICP). Acta Neurochir. 1998;140:41–6.PubMedCrossRef Lee TT, Galarza M, Villanueva PA. Diffuse axonal injury (DAI) is not associated with elevated intracranial pressure (ICP). Acta Neurochir. 1998;140:41–6.PubMedCrossRef
25.
go back to reference Maas AI, Steyerberg EW, Butcher I, Dammers R, Lu J, Marmarou A, et al. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24:303–14.PubMedCrossRef Maas AI, Steyerberg EW, Butcher I, Dammers R, Lu J, Marmarou A, et al. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24:303–14.PubMedCrossRef
26.
go back to reference Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16:452–64.PubMedCrossRef Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars MB, Smielewski P, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16:452–64.PubMedCrossRef
27.
go back to reference Farin A, Deutsch R, Biegon A, Marshall LF. Sex-related differences in patients with severe head injury: greater susceptibility to brain swelling in female patients 50 years of age and younger. J Neurosurg. 2003;98:32–6.PubMedCrossRef Farin A, Deutsch R, Biegon A, Marshall LF. Sex-related differences in patients with severe head injury: greater susceptibility to brain swelling in female patients 50 years of age and younger. J Neurosurg. 2003;98:32–6.PubMedCrossRef
28.
go back to reference Marincowitz C, Lecky FE, Townend W, Borakati A, Fabbri A, Sheldon TA. The risk of deterioration in GCS13-15 patients with traumatic brain injury identified by computed tomography imaging: a systematic review and meta-analysis. J Neurotrauma. 2018;35:703–18.PubMedPubMedCentralCrossRef Marincowitz C, Lecky FE, Townend W, Borakati A, Fabbri A, Sheldon TA. The risk of deterioration in GCS13-15 patients with traumatic brain injury identified by computed tomography imaging: a systematic review and meta-analysis. J Neurotrauma. 2018;35:703–18.PubMedPubMedCentralCrossRef
29.
go back to reference Zygun D. Non-neurological organ dysfunction in neurocritical care: impact on outcome and etiological considerations. Curr Opin Crit Care. 2005;11:139–43.PubMedCrossRef Zygun D. Non-neurological organ dysfunction in neurocritical care: impact on outcome and etiological considerations. Curr Opin Crit Care. 2005;11:139–43.PubMedCrossRef
30.
go back to reference Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent JL, et al. Extracranial complications in patients with acute brain injury: a post-hoc analysis of the SOAP study. Intensive Care Med. 2008;34:720–7.PubMedCrossRef Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent JL, et al. Extracranial complications in patients with acute brain injury: a post-hoc analysis of the SOAP study. Intensive Care Med. 2008;34:720–7.PubMedCrossRef
31.
go back to reference Adediran T, Drumheller BC, McCunn M, Stein DM, Albrecht JS. Sex differences in in-hospital complications among older adults after traumatic brain injury. J Surg Res. 2019;243:427–33.PubMedCrossRef Adediran T, Drumheller BC, McCunn M, Stein DM, Albrecht JS. Sex differences in in-hospital complications among older adults after traumatic brain injury. J Surg Res. 2019;243:427–33.PubMedCrossRef
32.
go back to reference Civiletti F, Assenzio B, Mazzeo AT, Medica D, Giaretta F, Deambrosis I, et al. Acute tubular injury is associated with severe traumatic brain injury: in vitro study on human tubular epithelial cells. Sci Rep. 2019;9:6090.PubMedPubMedCentralCrossRef Civiletti F, Assenzio B, Mazzeo AT, Medica D, Giaretta F, Deambrosis I, et al. Acute tubular injury is associated with severe traumatic brain injury: in vitro study on human tubular epithelial cells. Sci Rep. 2019;9:6090.PubMedPubMedCentralCrossRef
33.
go back to reference Kerr NA, de Rivero Vaccari JP, Abbassi S, Kaur H, Zambrano R, Wu S, et al. Traumatic brain injury-induced acute lung injury: evidence for activation and inhibition of a neural-respiratory-inflammasome axis. J Neurotrauma. 2018;35:2067–76.PubMedPubMedCentralCrossRef Kerr NA, de Rivero Vaccari JP, Abbassi S, Kaur H, Zambrano R, Wu S, et al. Traumatic brain injury-induced acute lung injury: evidence for activation and inhibition of a neural-respiratory-inflammasome axis. J Neurotrauma. 2018;35:2067–76.PubMedPubMedCentralCrossRef
34.
go back to reference Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.PubMedCrossRef Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.PubMedCrossRef
35.
go back to reference Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–11.PubMedCrossRef Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–11.PubMedCrossRef
36.
go back to reference Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest. 2008;133:1120–7.PubMedCrossRef Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest. 2008;133:1120–7.PubMedCrossRef
37.
go back to reference Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee N. Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol. 2010;88:414–21.PubMedCrossRef Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee N. Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol. 2010;88:414–21.PubMedCrossRef
38.
go back to reference Ley EJ, Short SS, Liou DZ, Singer MB, Mirocha J, Melo N, et al. Gender impacts mortality after traumatic brain injury in teenagers. J Trauma Acute Care Surg. 2013;75:682–6.PubMedCrossRef Ley EJ, Short SS, Liou DZ, Singer MB, Mirocha J, Melo N, et al. Gender impacts mortality after traumatic brain injury in teenagers. J Trauma Acute Care Surg. 2013;75:682–6.PubMedCrossRef
39.
go back to reference Albrecht JS, McCunn M, Stein DM, Simoni-Wastila L, Smith GS. Sex differences in mortality following isolated traumatic brain injury among older adults. J Trauma Acute Care Surg. 2016;81:486–92.PubMedPubMedCentralCrossRef Albrecht JS, McCunn M, Stein DM, Simoni-Wastila L, Smith GS. Sex differences in mortality following isolated traumatic brain injury among older adults. J Trauma Acute Care Surg. 2016;81:486–92.PubMedPubMedCentralCrossRef
40.
go back to reference Tanaka T, Imai T. Pubertal maturational in health girls and standardization ofmenarche age. J Jpn Pediatr Soc. 2005;109:1232–42. Tanaka T, Imai T. Pubertal maturational in health girls and standardization ofmenarche age. J Jpn Pediatr Soc. 2005;109:1232–42.
41.
go back to reference Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371:2467–76.PubMedCrossRef Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371:2467–76.PubMedCrossRef
42.
go back to reference Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457–66.PubMedPubMedCentralCrossRef Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371:2457–66.PubMedPubMedCentralCrossRef
43.
go back to reference Wagner AK, Bayir H, Ren D, Puccio A, Zafonte RD, Kochanek PM. Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age, and hypothermia. J Neurotrauma. 2004;21:125–36.PubMedCrossRef Wagner AK, Bayir H, Ren D, Puccio A, Zafonte RD, Kochanek PM. Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age, and hypothermia. J Neurotrauma. 2004;21:125–36.PubMedCrossRef
44.
go back to reference Bambach MR, Mitchell RJ, Grzebieta RH, Olivier J. The effectiveness of helmets in bicycle collisions with motor vehicles: a case-control study. Accid Anal Prev. 2013;53:78–88.PubMedCrossRef Bambach MR, Mitchell RJ, Grzebieta RH, Olivier J. The effectiveness of helmets in bicycle collisions with motor vehicles: a case-control study. Accid Anal Prev. 2013;53:78–88.PubMedCrossRef
45.
go back to reference Roozenbeek B, Lingsma HF, Lecky FE, Lu J, Weir J, Butcher I, et al. Prediction of outcome after moderate and severe traumatic brain injury: external validation of the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation after Significant Head injury (CRASH) prognostic models. Crit Care Med. 2012;40:1609–17.PubMedPubMedCentralCrossRef Roozenbeek B, Lingsma HF, Lecky FE, Lu J, Weir J, Butcher I, et al. Prediction of outcome after moderate and severe traumatic brain injury: external validation of the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation after Significant Head injury (CRASH) prognostic models. Crit Care Med. 2012;40:1609–17.PubMedPubMedCentralCrossRef
Metadata
Title
Sex and age differences in isolated traumatic brain injury: a retrospective observational study
Authors
Sanae Hosomi
Tetsuhisa Kitamura
Tomotaka Sobue
Hiroshi Ogura
Takeshi Shimazu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2021
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-021-02305-6

Other articles of this Issue 1/2021

BMC Neurology 1/2021 Go to the issue