Skip to main content
Top
Published in: Child's Nervous System 9/2022

Open Access 09-06-2022 | Central Nervous System Trauma | Original Article

Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury

Authors: Julian Zipfel, Dorothea Hegele, Konstantin Hockel, Susanne R. Kerscher, Ellen Heimberg, Marek Czosnyka, Felix Neunhoeffer, Martin U. Schuhmann

Published in: Child's Nervous System | Issue 9/2022

Login to get access

Abstract

Objectives

Impaired cerebral blood flow is a first-line reason of ischemic-hypoxic brain injury in children. The principal goal of intensive care management is to detect and prevent further cerebral blood flow deficits. This can be achieved by actively managing cerebral perfusion pressure (CPP) using input from cerebrovascular autoregulation (CAR). The main objective of the current study was to investigate CAR after cardiac arrest in children.

Methods

Nineteen consecutive children younger than 18 years after cardiopulmonary resuscitation, in whom intracranial pressure (ICP) was continuously measured, were included. Blood pressure and ICP were continuously monitored via ICM + software and actively managed using the pressure reactivity index (PRx) to achieve and maintain an optimal CPP. Outcome was scored using the extended Glasgow outcome scale (eGOS) at discharge and 6 months.

Results

Eight children died in hospital. At 6 months, further 4 children had an unfavorable (eGOS1–4) and 7 a favorable (eGOS5–8) outcome. Over the entire monitoring period, we found an elevated ICP (24.5 vs 7.4 mmHg), a lower CPP (50.3 vs 66.2 mmHg) and a higher PRx (0.24 vs − 0.01), indicating impaired CAR, in patients with unfavorable outcome. The dose of impaired autoregulation was significantly higher in unfavorable outcome (54.6 vs 29.3%). Analyzing only the first 72 h after cardiac arrest, ICP ≥ 10 mmHg and PRx > 0.2 correlated to unfavorable outcome.

Conclusions

Significant doses of impaired CAR within 72 h after resuscitation are associated with unfavorable outcome. The inability to restore autoregulation despite active attempts to do so as well as an elevated ICP may serve as a bad prognostic sign indicating a severe initial hypoxic-ischemic brain injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO (2020) Brain injury after cardiac arrest: from prognostication of comatose patients to rehabilitation. Lancet Neurol 19:611–622CrossRef Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO (2020) Brain injury after cardiac arrest: from prognostication of comatose patients to rehabilitation. Lancet Neurol 19:611–622CrossRef
2.
go back to reference van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE (2018) Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int 2018:4143636PubMedPubMedCentral van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE (2018) Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int 2018:4143636PubMedPubMedCentral
3.
go back to reference Hockel K, Diedler J, Neunhoeffer F, Heimberg E, Nagel C, Schuhmann MU (2017) Time spent with impaired autoregulation is linked with outcome in severe infant/paediatric traumatic brain injury. Acta Neurochir (Wien) 159:2053–2061CrossRef Hockel K, Diedler J, Neunhoeffer F, Heimberg E, Nagel C, Schuhmann MU (2017) Time spent with impaired autoregulation is linked with outcome in severe infant/paediatric traumatic brain injury. Acta Neurochir (Wien) 159:2053–2061CrossRef
4.
go back to reference Vavilala MS, Bowen A, Lam AM, Uffman JC, Powell J, Winn HR, Rivara FP (2003) Blood pressure and outcome after severe pediatric traumatic brain injury. J Trauma 55:1039–1044CrossRef Vavilala MS, Bowen A, Lam AM, Uffman JC, Powell J, Winn HR, Rivara FP (2003) Blood pressure and outcome after severe pediatric traumatic brain injury. J Trauma 55:1039–1044CrossRef
5.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17; discussion 17–19 Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17; discussion 17–19
6.
go back to reference Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 40:2456–2463CrossRef Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 40:2456–2463CrossRef
7.
go back to reference Figaji AA, Zwane E, Fieggen AG, Argent AC, Le Roux PD, Siesjo P, Peter JC (2009) Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr 4:420–428CrossRef Figaji AA, Zwane E, Fieggen AG, Argent AC, Le Roux PD, Siesjo P, Peter JC (2009) Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr 4:420–428CrossRef
8.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M (2012) Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 16:258–266CrossRef Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M (2012) Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 16:258–266CrossRef
9.
go back to reference Brady KM, Shaffner DH, Lee JK, Easley RB, Smielewski P, Czosnyka M, Jallo GI, Guerguerian AM (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124:e1205-1212CrossRef Brady KM, Shaffner DH, Lee JK, Easley RB, Smielewski P, Czosnyka M, Jallo GI, Guerguerian AM (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124:e1205-1212CrossRef
10.
go back to reference Lewis PM, Czosnyka M, Carter BG, Rosenfeld JV, Paul E, Singhal N, Butt W (2015) Cerebrovascular pressure reactivity in children with traumatic brain injury. Pediatr Crit Care Med 16:739–749CrossRef Lewis PM, Czosnyka M, Carter BG, Rosenfeld JV, Paul E, Singhal N, Butt W (2015) Cerebrovascular pressure reactivity in children with traumatic brain injury. Pediatr Crit Care Med 16:739–749CrossRef
11.
go back to reference Nagel C, Diedler J, Gerbig I, Heimberg E, Schuhmann MU, Hockel K (2016) State of cerebrovascular autoregulation correlates with outcome in severe infant/pediatric traumatic brain injury. Acta Neurochir Suppl 122:239–244CrossRef Nagel C, Diedler J, Gerbig I, Heimberg E, Schuhmann MU, Hockel K (2016) State of cerebrovascular autoregulation correlates with outcome in severe infant/pediatric traumatic brain injury. Acta Neurochir Suppl 122:239–244CrossRef
12.
go back to reference Young AM, Donnelly J, Czosnyka M, Jalloh I, Liu X, Aries MJ, Fernandes HM, Garnett MR, Smielewski P, Hutchinson PJ, Agrawal S (2016) Continuous multimodality monitoring in children after traumatic brain injury-preliminary experience. PLoS ONE 11:e0148817CrossRef Young AM, Donnelly J, Czosnyka M, Jalloh I, Liu X, Aries MJ, Fernandes HM, Garnett MR, Smielewski P, Hutchinson PJ, Agrawal S (2016) Continuous multimodality monitoring in children after traumatic brain injury-preliminary experience. PLoS ONE 11:e0148817CrossRef
13.
go back to reference Sekhon MS, Griesdale DE, Ainslie PN, Gooderham P, Foster D, Czosnyka M, Robba C, Cardim D (2019) Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation 141:96–103CrossRef Sekhon MS, Griesdale DE, Ainslie PN, Gooderham P, Foster D, Czosnyka M, Robba C, Cardim D (2019) Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation 141:96–103CrossRef
14.
go back to reference Balu R, Rajagopalan S, Baghshomali S, Kirschen M, Amurthur A, Kofke WA, Abella BS (2021) Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury. Resuscitation 164:114–121CrossRef Balu R, Rajagopalan S, Baghshomali S, Kirschen M, Amurthur A, Kofke WA, Abella BS (2021) Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury. Resuscitation 164:114–121CrossRef
15.
go back to reference Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, Smielewski P, Czosnyka M, Participants C-THRS-S, Investigators, (2019) Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. J Neurotrauma 36:1505–1517CrossRef Zeiler FA, Ercole A, Cabeleira M, Carbonara M, Stocchetti N, Menon DK, Smielewski P, Czosnyka M, Participants C-THRS-S, Investigators, (2019) Comparison of performance of different optimal cerebral perfusion pressure parameters for outcome prediction in adult traumatic brain injury: a Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. J Neurotrauma 36:1505–1517CrossRef
16.
go back to reference Zipfel J, Hockel KL, Gerbig I, Heimberg E, Schuhmann MU, Neunhoeffer F (2021) Impaired autoregulation following resuscitation correlates with outcome in pediatric patients: a pilot study. Acta Neurochir Suppl 131:97–101CrossRef Zipfel J, Hockel KL, Gerbig I, Heimberg E, Schuhmann MU, Neunhoeffer F (2021) Impaired autoregulation following resuscitation correlates with outcome in pediatric patients: a pilot study. Acta Neurochir Suppl 131:97–101CrossRef
17.
go back to reference Iordanova B, Li L, Clark RSB, Manole MD (2017) Alterations in cerebral blood flow after resuscitation from cardiac arrest. Front Pediatr 5:174CrossRef Iordanova B, Li L, Clark RSB, Manole MD (2017) Alterations in cerebral blood flow after resuscitation from cardiac arrest. Front Pediatr 5:174CrossRef
18.
go back to reference Lovett ME, Maa T, Chung MG, O’Brien NF (2018) Cerebral blood flow velocity and autoregulation in paediatric patients following a global hypoxic-ischaemic insult. Resuscitation 126:191–196CrossRef Lovett ME, Maa T, Chung MG, O’Brien NF (2018) Cerebral blood flow velocity and autoregulation in paediatric patients following a global hypoxic-ischaemic insult. Resuscitation 126:191–196CrossRef
19.
go back to reference Inamasu J, Miyatake S, Suzuki M, Nakatsukasa M, Tomioka H, Honda M, Kase K, Kobayashi K (2010) Early CT signs in out-of-hospital cardiac arrest survivors: temporal profile and prognostic significance. Resuscitation 81:534–538CrossRef Inamasu J, Miyatake S, Suzuki M, Nakatsukasa M, Tomioka H, Honda M, Kase K, Kobayashi K (2010) Early CT signs in out-of-hospital cardiac arrest survivors: temporal profile and prognostic significance. Resuscitation 81:534–538CrossRef
20.
go back to reference Fergusson NA, Hoiland RL, Thiara S, Foster D, Gooderham P, Rikhraj K, Grunau B, Christenson J, Ainslie PN, Griesdale DEG, Sekhon MS (2021) Goal-directed care using invasive neuromonitoring versus standard of care after cardiac arrest: a matched cohort study. Crit Care Med Fergusson NA, Hoiland RL, Thiara S, Foster D, Gooderham P, Rikhraj K, Grunau B, Christenson J, Ainslie PN, Griesdale DEG, Sekhon MS (2021) Goal-directed care using invasive neuromonitoring versus standard of care after cardiac arrest: a matched cohort study. Crit Care Med
21.
go back to reference Lourenco CF, Laranjinha J (2021) Nitric oxide pathways in neurovascular coupling under normal and stress conditions in the brain: strategies to rescue aberrant coupling and improve cerebral blood flow. Front Physiol 12:729201CrossRef Lourenco CF, Laranjinha J (2021) Nitric oxide pathways in neurovascular coupling under normal and stress conditions in the brain: strategies to rescue aberrant coupling and improve cerebral blood flow. Front Physiol 12:729201CrossRef
22.
go back to reference Laws JC, Jordan LC, Pagano LM, Wellons JC 3rd, Wolf MS (2022) Multimodal neurologic monitoring in children with acute brain injury. Pediatr Neurol 129:62–71CrossRef Laws JC, Jordan LC, Pagano LM, Wellons JC 3rd, Wolf MS (2022) Multimodal neurologic monitoring in children with acute brain injury. Pediatr Neurol 129:62–71CrossRef
23.
go back to reference Ramos MD, Briyal S, Prazad P, Gulati A (2022) Neuroprotective effect of sovateltide (IRL 1620, PMZ 1620) in a neonatal rat model of hypoxic-ischemic encephalopathy. Neuroscience 480:194–202CrossRef Ramos MD, Briyal S, Prazad P, Gulati A (2022) Neuroprotective effect of sovateltide (IRL 1620, PMZ 1620) in a neonatal rat model of hypoxic-ischemic encephalopathy. Neuroscience 480:194–202CrossRef
24.
go back to reference Chaudhari P, Madaan A, Rivera JC, Charfi I, Habelrih T, Hou X, Nezhady M, Lodygensky G, Pineyro G, Muanza T, Chemtob S (2022) Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J Cereb Blood Flow Metab 271678X221077499 Chaudhari P, Madaan A, Rivera JC, Charfi I, Habelrih T, Hou X, Nezhady M, Lodygensky G, Pineyro G, Muanza T, Chemtob S (2022) Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J Cereb Blood Flow Metab 271678X221077499
25.
go back to reference Yin C, Ji Y, Ma N, Chen K, Zhang W, Bai D, Jia X, Xia S, Yin H (2022) RNA-seq analysis reveals potential molecular mechanisms of ZNF580/ZFP580 promoting neuronal survival and inhibiting apoptosis after hypoxic-ischemic brain damage. Neuroscience 483:52–65CrossRef Yin C, Ji Y, Ma N, Chen K, Zhang W, Bai D, Jia X, Xia S, Yin H (2022) RNA-seq analysis reveals potential molecular mechanisms of ZNF580/ZFP580 promoting neuronal survival and inhibiting apoptosis after hypoxic-ischemic brain damage. Neuroscience 483:52–65CrossRef
26.
go back to reference Corry KA, White OR, Shearlock AE, Moralejo DH, Law JB, Snyder JM, Juul SE, Wood TR (2021) Evaluating neuroprotective effects of uridine, erythropoietin, and therapeutic hypothermia in a Ferret model of inflammation-sensitized hypoxic-ischemic encephalopathy. Int J Mol Sci 22 Corry KA, White OR, Shearlock AE, Moralejo DH, Law JB, Snyder JM, Juul SE, Wood TR (2021) Evaluating neuroprotective effects of uridine, erythropoietin, and therapeutic hypothermia in a Ferret model of inflammation-sensitized hypoxic-ischemic encephalopathy. Int J Mol Sci 22
27.
go back to reference Fantacci C, Capozzi D, Ferrara P, Chiaretti A (2013) Neuroprotective role of nerve growth factor in hypoxic-ischemic brain injury. Brain Sci 3:1013–1022CrossRef Fantacci C, Capozzi D, Ferrara P, Chiaretti A (2013) Neuroprotective role of nerve growth factor in hypoxic-ischemic brain injury. Brain Sci 3:1013–1022CrossRef
28.
go back to reference Otero-Losada M, Wandosell FG, Garcia-Segura LM, Capani F (2019) Editorial: Neuroprotection in brain hypoxia. Front Neurosci 13:212CrossRef Otero-Losada M, Wandosell FG, Garcia-Segura LM, Capani F (2019) Editorial: Neuroprotection in brain hypoxia. Front Neurosci 13:212CrossRef
29.
go back to reference Fan X, Wang H, Zhang L, Tang J, Qu Y, Mu D (2020) Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury. Rev Neurosci Fan X, Wang H, Zhang L, Tang J, Qu Y, Mu D (2020) Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury. Rev Neurosci
30.
go back to reference Sekhon MS, Ainslie PN, Menon DK, Thiara SS, Cardim D, Gupta AK, Hoiland RL, Gooderham P, Griesdale DE (2020) Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest. Crit Care Med 48:378–384CrossRef Sekhon MS, Ainslie PN, Menon DK, Thiara SS, Cardim D, Gupta AK, Hoiland RL, Gooderham P, Griesdale DE (2020) Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest. Crit Care Med 48:378–384CrossRef
31.
go back to reference Guilfoyle MR, Helmy A, Donnelly J, Stovell MG, Timofeev I, Pickard JD, Czosnyka M, Smielewski P, Menon DK, Carpenter KLH, Hutchinson PJ (2021) Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: a microdialysis study in 619 patients. PLoS ONE 16:e0260291CrossRef Guilfoyle MR, Helmy A, Donnelly J, Stovell MG, Timofeev I, Pickard JD, Czosnyka M, Smielewski P, Menon DK, Carpenter KLH, Hutchinson PJ (2021) Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: a microdialysis study in 619 patients. PLoS ONE 16:e0260291CrossRef
Metadata
Title
Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury
Authors
Julian Zipfel
Dorothea Hegele
Konstantin Hockel
Susanne R. Kerscher
Ellen Heimberg
Marek Czosnyka
Felix Neunhoeffer
Martin U. Schuhmann
Publication date
09-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 9/2022
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-022-05579-4

Other articles of this Issue 9/2022

Child's Nervous System 9/2022 Go to the issue