Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Central Nervous System Trauma | Editorial

How I monitor cerebral autoregulation

Authors: Samuel P. Klein, Bart Depreitere, Geert Meyfroidt

Published in: Critical Care | Issue 1/2019

Login to get access

Excerpt

Cerebrovascular pressure autoregulation (CAR) protects the brain against changes in cerebral perfusion pressure (CPP) by adjusting the vascular resistance, to ensure a steady cerebral blood flow (CBF). The role of impaired CAR is well-described in the pathophysiology of traumatic brain injury (TBI), stroke, subarachnoid hemorrhage (SAH), and prematurity-related intracranial hemorrhage [1], but also in sepsis-associated brain dysfunction [2]. A clinical tool to assess CAR in real time may improve our understanding of the role of disturbed CBF in brain injury and systemic insults and open the door for personalized arterial blood pressure (ABP) manipulation to remain within the limits of active CAR [3]. …
Literature
1.
go back to reference Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.CrossRef Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.CrossRef
2.
go back to reference Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care. 2018;22(1):327. Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care. 2018;22(1):327.
3.
go back to reference Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.CrossRef Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.CrossRef
4.
go back to reference Joshi B, Ono M, Brown C, et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10.CrossRef Joshi B, Ono M, Brown C, et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10.CrossRef
5.
go back to reference Panerai RB. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng. 2008;8:42–59.CrossRef Panerai RB. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng. 2008;8:42–59.CrossRef
6.
go back to reference Willie CK, Tzeng Y-C, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592:841–59.CrossRef Willie CK, Tzeng Y-C, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592:841–59.CrossRef
7.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 discussion 17-9.CrossRef Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7 discussion 17-9.CrossRef
8.
go back to reference Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.CrossRef Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.CrossRef
9.
go back to reference Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.CrossRef Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.CrossRef
10.
go back to reference Zeiler FA, Donnelly J, Calviello L, Menon DK, Smielewski P, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part I: a scoping review of intermittent/semi-intermittent methods. J Neurotrauma. 2017;34:3207–23.CrossRef Zeiler FA, Donnelly J, Calviello L, Menon DK, Smielewski P, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part I: a scoping review of intermittent/semi-intermittent methods. J Neurotrauma. 2017;34:3207–23.CrossRef
11.
go back to reference Zeiler FA, Smielewski P, Stevens A, et al. Non-invasive pressure reactivity index using Doppler systolic flow parameters: a pilot analysis. J Neurotrauma. 2019;36(5):713–20.CrossRef Zeiler FA, Smielewski P, Stevens A, et al. Non-invasive pressure reactivity index using Doppler systolic flow parameters: a pilot analysis. J Neurotrauma. 2019;36(5):713–20.CrossRef
12.
go back to reference Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7.CrossRef Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7.CrossRef
13.
go back to reference Tan CO, Taylor AJ. Integrative physiologic and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014;99:3–15.CrossRef Tan CO, Taylor AJ. Integrative physiologic and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014;99:3–15.CrossRef
14.
go back to reference Guendling K, Smielewski P, Czosnyka M, et al. Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. Acta Neurochir. 2006;96:108–13.CrossRef Guendling K, Smielewski P, Czosnyka M, et al. Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. Acta Neurochir. 2006;96:108–13.CrossRef
15.
go back to reference Okonkwo DO, Shutter LA, Moore C, et al. Brain tissue oxygen monitoring and management in severe traumatic brain injury (BOOST-II): a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.CrossRef Okonkwo DO, Shutter LA, Moore C, et al. Brain tissue oxygen monitoring and management in severe traumatic brain injury (BOOST-II): a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.CrossRef
Metadata
Title
How I monitor cerebral autoregulation
Authors
Samuel P. Klein
Bart Depreitere
Geert Meyfroidt
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2454-1

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue