Skip to main content
Top
Published in: Malaria Journal 1/2011

Open Access 01-12-2011 | Research

Central nervous system exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous dosing in mice

Authors: Geoffrey S Dow, Erin Milner, Ian Bathurst, Jayendra Bhonsle, Diana Caridha, Sean Gardner, Lucia Gerena, Michael Kozar, Charlotte Lanteri, Anne Mannila, William McCalmont, Jay Moon, Kevin D Read, Suzanne Norval, Norma Roncal, David M Shackleford, Jason Sousa, Jessica Steuten, Karen L White, Qiang Zeng, Susan A Charman

Published in: Malaria Journal | Issue 1/2011

Login to get access

Abstract

Background

The clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization.

Experimental design

The plasma and brain levels of MQ and twenty five, 4-position modified NGQMs were determined using LCMS/MS at 5 min, 1, 6 and 24 h after IV administration (5 mg/kg) to male FVB mice. Fraction unbound in brain tissue homogenate was assessed in vitro using equilibrium dialysis and this was then used to calculate brain-unbound concentration from the measured brain total concentration. A five-fold reduction CNS levels relative to mefloquine was considered acceptable. Additional pharmacological properties such as permeability and potency were determined.

Results

The maximum brain (whole/free) concentrations of MQ were 1807/4.9 ng/g. Maximum whole brain concentrations of NGQMs were 23 - 21546 ng/g. Maximum free brain concentrations were 0.5 to 267 ng/g. Seven (28%) and two (8%) compounds exhibited acceptable whole and free brain concentrations, respectively. Optimization of maximum free brain levels, IC90s (as a measure or potency) and residual plasma concentrations at 24 h (as a surrogate for half-life) in the same molecule may be feasible since they were not correlated. Diamine quinoline methanols were the most promising lead compounds.

Conclusion

Reduction of CNS levels of NGQMs relative to mefloquine may be feasible. Optimization of this property together with potency and long half-life may be feasible amongst diamine quinoline methanols.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dow GS, Magill AJ, Ohrt C: Clinical development of new prophylactic antimalarial drugs after the 5th Amendment to the Declaration of Helsinki. Ther Clin Risk Manag. 2008, 4: 803-819.PubMedCentralPubMed Dow GS, Magill AJ, Ohrt C: Clinical development of new prophylactic antimalarial drugs after the 5th Amendment to the Declaration of Helsinki. Ther Clin Risk Manag. 2008, 4: 803-819.PubMedCentralPubMed
2.
go back to reference Schellenberg D, Cisse B, Mendendez C: The IPTi Consortium: research for policy and action. Trends Parasitol. 2006, 22: 296-300. 10.1016/j.pt.2006.05.006.CrossRefPubMed Schellenberg D, Cisse B, Mendendez C: The IPTi Consortium: research for policy and action. Trends Parasitol. 2006, 22: 296-300. 10.1016/j.pt.2006.05.006.CrossRefPubMed
3.
go back to reference Shanks GD, Magill AJ, Freedman DO, Keystone JS, Bradley DJ, Steffen R: Drug-free holidays: pre-travel versus during travel malaria chemoprophylaxis. Am J Trop Med Hyg. 2007, 77: 1-2.PubMed Shanks GD, Magill AJ, Freedman DO, Keystone JS, Bradley DJ, Steffen R: Drug-free holidays: pre-travel versus during travel malaria chemoprophylaxis. Am J Trop Med Hyg. 2007, 77: 1-2.PubMed
4.
go back to reference Rendi-Wagner P, Noedl H, Wernsdorfer WH, Weidermann G, Mikolasek A, Kollaristch H: Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults. Acta Trop. 2002, 81: 167-173. 10.1016/S0001-706X(01)00210-8.CrossRefPubMed Rendi-Wagner P, Noedl H, Wernsdorfer WH, Weidermann G, Mikolasek A, Kollaristch H: Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults. Acta Trop. 2002, 81: 167-173. 10.1016/S0001-706X(01)00210-8.CrossRefPubMed
5.
go back to reference Caridha A, Yourick D, Cabezas M, Wolf L, Hudson TH, Dow GS: Mefloquine-induced disruption of calcium homeostasis in mammalian cells is similar to that induced by ionomycin. Antimicrob Agent Chemother. 2008, 52: 684-693. 10.1128/AAC.00874-07.CrossRef Caridha A, Yourick D, Cabezas M, Wolf L, Hudson TH, Dow GS: Mefloquine-induced disruption of calcium homeostasis in mammalian cells is similar to that induced by ionomycin. Antimicrob Agent Chemother. 2008, 52: 684-693. 10.1128/AAC.00874-07.CrossRef
6.
go back to reference Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, Park M, Smith K, Cannard K: Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agent Chemother. 2006, 50: 1045-1053. 10.1128/AAC.50.3.1045-1053.2006.CrossRef Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, Park M, Smith K, Cannard K: Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agent Chemother. 2006, 50: 1045-1053. 10.1128/AAC.50.3.1045-1053.2006.CrossRef
7.
go back to reference Milner E, McCalmont W, Bhonsle J, Caridha C, Carroll D, Gardner S, Gerena L, Gettayacamin M, Lanteri C, Luong T, Melendez V, Moon J, Roncal N, Sousa J, Tangtaeng A, Wipf P, Dow GS: Structure-activity relationships amongst 4-position quinoline methanol antimalarials that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Bioorg Med Chem Lett. 2010, 20: 1347-1351.CrossRefPubMed Milner E, McCalmont W, Bhonsle J, Caridha C, Carroll D, Gardner S, Gerena L, Gettayacamin M, Lanteri C, Luong T, Melendez V, Moon J, Roncal N, Sousa J, Tangtaeng A, Wipf P, Dow GS: Structure-activity relationships amongst 4-position quinoline methanol antimalarials that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Bioorg Med Chem Lett. 2010, 20: 1347-1351.CrossRefPubMed
8.
go back to reference Milner E, McCalmont W, Bhonsle J, Caridha D, Cobar J, Gardner S, Gerena L, Goodine D, Lanteri C, Melendez V, Roncal N, Sousa J, Wipf P, Dow G: Anti-malarial activity of a non-piperidine library of next-generation quinoline methanols. Malar J. 2010, 9: 51-10.1186/1475-2875-9-51.PubMedCentralCrossRefPubMed Milner E, McCalmont W, Bhonsle J, Caridha D, Cobar J, Gardner S, Gerena L, Goodine D, Lanteri C, Melendez V, Roncal N, Sousa J, Wipf P, Dow G: Anti-malarial activity of a non-piperidine library of next-generation quinoline methanols. Malar J. 2010, 9: 51-10.1186/1475-2875-9-51.PubMedCentralCrossRefPubMed
9.
go back to reference Rendi-Wagner PH, Noedl H, Wernsdorfer WH, Weidermann G, Mikolasek A, Kollaritsch H: Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults. Acta Trop. 2002, 81: 167-173. 10.1016/S0001-706X(01)00210-8.CrossRefPubMed Rendi-Wagner PH, Noedl H, Wernsdorfer WH, Weidermann G, Mikolasek A, Kollaritsch H: Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults. Acta Trop. 2002, 81: 167-173. 10.1016/S0001-706X(01)00210-8.CrossRefPubMed
10.
go back to reference Overbosch D, Schilthuis H, Bienzle U, Behrens RH, Kain KC, Clarke PD, Toovey S, Knobloch J, Nothdurft HD, Shaw D, Roskell NS, Chulay JD: Atovaquone-proguanil versus mefloquine for malaria prophylaxis in non-immune travelers: results from a randomized, double-blind study. Clin Infect Dis. 2001, 33: 1015-1021. 10.1086/322694.CrossRefPubMed Overbosch D, Schilthuis H, Bienzle U, Behrens RH, Kain KC, Clarke PD, Toovey S, Knobloch J, Nothdurft HD, Shaw D, Roskell NS, Chulay JD: Atovaquone-proguanil versus mefloquine for malaria prophylaxis in non-immune travelers: results from a randomized, double-blind study. Clin Infect Dis. 2001, 33: 1015-1021. 10.1086/322694.CrossRefPubMed
11.
go back to reference Lipinski CA: Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000, 44: 235-249. 10.1016/S1056-8719(00)00107-6.CrossRefPubMed Lipinski CA: Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000, 44: 235-249. 10.1016/S1056-8719(00)00107-6.CrossRefPubMed
12.
go back to reference Kerns EH, Di L: Drug-like properties: concepts, structure design and methods. 2008, Burlington, MA, Elsevier Inc, 35-100. Kerns EH, Di L: Drug-like properties: concepts, structure design and methods. 2008, Burlington, MA, Elsevier Inc, 35-100.
13.
go back to reference Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P: Central nervous system drug disposition: The relationship between in situ brain permeability and brain free fraction. JPET. 2007, 322: 205-213. 10.1124/jpet.107.121525.CrossRef Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P: Central nervous system drug disposition: The relationship between in situ brain permeability and brain free fraction. JPET. 2007, 322: 205-213. 10.1124/jpet.107.121525.CrossRef
14.
go back to reference Kalvass JC, Maurer TS: Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharmaceutics Drug Disp. 2002, 23: 327-338. 10.1002/bdd.325.CrossRef Kalvass JC, Maurer TS: Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharmaceutics Drug Disp. 2002, 23: 327-338. 10.1002/bdd.325.CrossRef
15.
go back to reference Go ML, Ngiam TL: Thermodynamics of partitioning of the antimalarial drug mefloquine in phospholipid bilayers and bulk solvents. Chem Pharm Bull. 1997, 45: 2055-2060.CrossRefPubMed Go ML, Ngiam TL: Thermodynamics of partitioning of the antimalarial drug mefloquine in phospholipid bilayers and bulk solvents. Chem Pharm Bull. 1997, 45: 2055-2060.CrossRefPubMed
16.
go back to reference Zidovetzki R, Sherman IW, Attiya A, De Boeck H: A nuclear magnetic resonance study of the interactions of the antimalarials chloroquine, quinacrine, quinine and mefloquine with dipalmitoylphosphatidylcholine bilayers. Mol Biochem Parasitol. 1989, 35: 199-207. 10.1016/0166-6851(89)90206-5.CrossRefPubMed Zidovetzki R, Sherman IW, Attiya A, De Boeck H: A nuclear magnetic resonance study of the interactions of the antimalarials chloroquine, quinacrine, quinine and mefloquine with dipalmitoylphosphatidylcholine bilayers. Mol Biochem Parasitol. 1989, 35: 199-207. 10.1016/0166-6851(89)90206-5.CrossRefPubMed
17.
go back to reference Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed
18.
go back to reference Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE: In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob Agents Chemother. 1985, 27: 525-530.PubMedCentralCrossRefPubMed Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE: In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob Agents Chemother. 1985, 27: 525-530.PubMedCentralCrossRefPubMed
19.
go back to reference Dow GS, Magill AJ: Kucer's Use of Antibiotics. Edited by: Grayson ML, Crowe SM, McCarthy JS, Mills J, Mouton JW, Norrby SR, Paterson DL and Pfaller MA. 2008, ASM Press, Washington DC, 2024-2035. "Mefloquine", Sixth Dow GS, Magill AJ: Kucer's Use of Antibiotics. Edited by: Grayson ML, Crowe SM, McCarthy JS, Mills J, Mouton JW, Norrby SR, Paterson DL and Pfaller MA. 2008, ASM Press, Washington DC, 2024-2035. "Mefloquine", Sixth
20.
go back to reference Paul MS, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL: How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discovery. 2010, 9: 203-214.PubMed Paul MS, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL: How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discovery. 2010, 9: 203-214.PubMed
Metadata
Title
Central nervous system exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous dosing in mice
Authors
Geoffrey S Dow
Erin Milner
Ian Bathurst
Jayendra Bhonsle
Diana Caridha
Sean Gardner
Lucia Gerena
Michael Kozar
Charlotte Lanteri
Anne Mannila
William McCalmont
Jay Moon
Kevin D Read
Suzanne Norval
Norma Roncal
David M Shackleford
Jason Sousa
Jessica Steuten
Karen L White
Qiang Zeng
Susan A Charman
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2011
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-10-150

Other articles of this Issue 1/2011

Malaria Journal 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.