Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Central memory CD4+ T cells are preferential targets of double infection by HIV-1

Authors: Aiman A. Haqqani, Samantha L. Marek, Jagadish Kumar, Miles Davenport, Heng Wang, John C. Tilton

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Template switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design. Virions with two distinct genomes are produced exclusively from cells infected with two or more viruses, or ‘doubly infected’ cells. Previous studies have revealed higher than expected frequencies of doubly infected cells compared to frequencies based on chance alone, suggesting non-random enhancement of double infection.

Methods

We investigated double infection of unstimulated primary CD4+ T cells using reporter viruses carrying genes for different fluorescent proteins, EGFP and mCherry, combined with sophisticated modeling techniques based on Poisson distribution. Additionally, through the use of multiparameter flow cytometry we examined the susceptibility of naïve and memory subsets of CD4+ T cells to double infection by HIV.

Results

Using our double infection system, we confirm non-random enhancement of multiple infection events. Double infection of CD4+ T cells was not found to be a consequence of suboptimal provirus expression rescued by Tat in trans—as has been reported in cell lines—but rather due to a heterogeneous cell population in which only a fraction of primary peripheral blood CD4+ T cells are susceptible to HIV infection regardless of viral titer. Intriguingly, double infection of CD4+ T cells occurred preferentially in memory CD4+ T cells—particularly the central memory (TCM) subset—but was not a consequence of SAMHD1-mediated restriction of HIV infection in naïve cells.

Conclusions

These findings reveal that double infection in primary CD4+ T cells is primarily a consequences of cellular heterogeneity and not rescue of suboptimal provirus expression by Tat in trans. Additionally, we report a previously unappreciated phenomenon of enhanced double infection within primary TCM cells and suggest that these long-lived cells may serve as an archive that drive ongoing viral recombination events in vivo.
Literature
1.
go back to reference Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.CrossRefPubMed Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.CrossRefPubMed
2.
go back to reference Keele BF, van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:523–6.PubMedCentralCrossRefPubMed Keele BF, van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:523–6.PubMedCentralCrossRefPubMed
3.
go back to reference Plantier J-C, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V, et al. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15:871–2.CrossRefPubMed Plantier J-C, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V, et al. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15:871–2.CrossRefPubMed
4.
go back to reference Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, et al. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature. 2006;444:164.CrossRefPubMed Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, et al. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature. 2006;444:164.CrossRefPubMed
5.
go back to reference Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, et al. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000;288:1789–96.CrossRefPubMed Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, et al. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000;288:1789–96.CrossRefPubMed
6.
go back to reference Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008;455:661–4.PubMedCentralCrossRefPubMed Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008;455:661–4.PubMedCentralCrossRefPubMed
7.
go back to reference Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, Marx PA, et al. Hybrid origin of SIV in chimpanzees. Science. 2003;300:1713–3. Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, Marx PA, et al. Hybrid origin of SIV in chimpanzees. Science. 2003;300:1713–3.
8.
9.
go back to reference Charpentier C, Nora T, Tenaillon O, Clavel F, Hance AJ. Extensive recombination among human immunodeficiency virus type 1 quasispecies makes an important contribution to viral diversity in individual patients. J Virol. 2006;80:2472–82.PubMedCentralCrossRefPubMed Charpentier C, Nora T, Tenaillon O, Clavel F, Hance AJ. Extensive recombination among human immunodeficiency virus type 1 quasispecies makes an important contribution to viral diversity in individual patients. J Virol. 2006;80:2472–82.PubMedCentralCrossRefPubMed
10.
go back to reference Coffin JM. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science. 1995;267:483–9.CrossRefPubMed Coffin JM. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science. 1995;267:483–9.CrossRefPubMed
11.
go back to reference Walker BD, Korber BT. Immune control of HIV: The obstacles of HLA and viral diversity. Nat Immunol. 2001;2:473–5.CrossRefPubMed Walker BD, Korber BT. Immune control of HIV: The obstacles of HLA and viral diversity. Nat Immunol. 2001;2:473–5.CrossRefPubMed
13.
go back to reference Schlub TE, Grimm AJ, Smyth RP, Cromer D, Chopra A, Mallal S, et al. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol. 2014;88:3837–49.PubMedCentralCrossRefPubMed Schlub TE, Grimm AJ, Smyth RP, Cromer D, Chopra A, Mallal S, et al. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol. 2014;88:3837–49.PubMedCentralCrossRefPubMed
14.
go back to reference Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: Pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A. 1990;87:1556–60.PubMedCentralCrossRefPubMed Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: Pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A. 1990;87:1556–60.PubMedCentralCrossRefPubMed
15.
go back to reference Brégnard C, Pacini G, Danos O, Basmaciogullari S. Suboptimal provirus expression explains apparent nonrandom cell coinfection with HIV-1. J Virol. 2012;86:8810–20.PubMedCentralCrossRefPubMed Brégnard C, Pacini G, Danos O, Basmaciogullari S. Suboptimal provirus expression explains apparent nonrandom cell coinfection with HIV-1. J Virol. 2012;86:8810–20.PubMedCentralCrossRefPubMed
16.
go back to reference Chen J, Dang Q, Unutmaz D, Pathak VK, Maldarelli F, Powell D, et al. Mechanisms of nonrandom human immunodeficiency virus type 1 infection and double infection: Preference in virus entry is important but is not the sole factor. J Virol. 2005;79:4140–9.PubMedCentralCrossRefPubMed Chen J, Dang Q, Unutmaz D, Pathak VK, Maldarelli F, Powell D, et al. Mechanisms of nonrandom human immunodeficiency virus type 1 infection and double infection: Preference in virus entry is important but is not the sole factor. J Virol. 2005;79:4140–9.PubMedCentralCrossRefPubMed
17.
go back to reference Dang Q, Chen J, Unutmaz D, Coffin JM, Pathak VK, Powell D, et al. Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proc Natl Acad Sci U S A. 2004;101:632–7.PubMedCentralCrossRefPubMed Dang Q, Chen J, Unutmaz D, Coffin JM, Pathak VK, Powell D, et al. Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proc Natl Acad Sci U S A. 2004;101:632–7.PubMedCentralCrossRefPubMed
18.
go back to reference Xin B, Jones S, Puffenberger EG, Hinze C, Bright A, Tan H, et al. Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc Natl Acad Sci U S A. 2011;108:5372–7.PubMedCentralCrossRefPubMed Xin B, Jones S, Puffenberger EG, Hinze C, Bright A, Tan H, et al. Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc Natl Acad Sci U S A. 2011;108:5372–7.PubMedCentralCrossRefPubMed
19.
go back to reference Tilton CA, Tabler CO, Lucera MB, Marek SL, Haqqani AA, Tilton JC. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets. J Virol Methods. 2014;195:164–9.PubMedCentralCrossRefPubMed Tilton CA, Tabler CO, Lucera MB, Marek SL, Haqqani AA, Tilton JC. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets. J Virol Methods. 2014;195:164–9.PubMedCentralCrossRefPubMed
20.
go back to reference Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, et al. Engineering HIV-resistant human CD4+ T Cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7:e1002020.PubMedCentralCrossRefPubMed Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, et al. Engineering HIV-resistant human CD4+ T Cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011;7:e1002020.PubMedCentralCrossRefPubMed
21.
go back to reference Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105:7552–7.PubMedCentralCrossRefPubMed Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105:7552–7.PubMedCentralCrossRefPubMed
22.
go back to reference Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993;90:8392–6.PubMedCentralCrossRefPubMed Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993;90:8392–6.PubMedCentralCrossRefPubMed
23.
go back to reference Kutner RH, Zhang X-Y, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc. 2009;4:495–505.CrossRefPubMed Kutner RH, Zhang X-Y, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc. 2009;4:495–505.CrossRefPubMed
25.
go back to reference Tabler CO, Lucera MB, Haqqani AA, McDonald DJ, Migueles SA, Connors M, et al. CD4+ memory stem cells are infected by HIV-1 in a manner regulated in part by SAMHD1 expression. J Virol. 2014;88:4976–86.PubMedCentralCrossRefPubMed Tabler CO, Lucera MB, Haqqani AA, McDonald DJ, Migueles SA, Connors M, et al. CD4+ memory stem cells are infected by HIV-1 in a manner regulated in part by SAMHD1 expression. J Virol. 2014;88:4976–86.PubMedCentralCrossRefPubMed
26.
go back to reference Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379–82.CrossRefPubMed Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480:379–82.CrossRefPubMed
27.
go back to reference Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13:223–8.PubMedCentralCrossRefPubMed Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13:223–8.PubMedCentralCrossRefPubMed
28.
29.
go back to reference Briggs JAG, Simon MN, Gross I, Kräusslich H-G, Fuller SD, Vogt VM, et al. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol. 2004;11:672–5.CrossRefPubMed Briggs JAG, Simon MN, Gross I, Kräusslich H-G, Fuller SD, Vogt VM, et al. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol. 2004;11:672–5.CrossRefPubMed
31.
go back to reference O’Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol. 2000;74:10074–80.PubMedCentralCrossRefPubMed O’Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol. 2000;74:10074–80.PubMedCentralCrossRefPubMed
32.
go back to reference Guo J, Wang W, Yu D, Wu Y. Spinoculation triggers dynamic actin and cofilin activity that facilitates HIV-1 infection of transformed and resting CD4 T cells. J Virol. 2011;85:9824–33.PubMedCentralCrossRefPubMed Guo J, Wang W, Yu D, Wu Y. Spinoculation triggers dynamic actin and cofilin activity that facilitates HIV-1 infection of transformed and resting CD4 T cells. J Virol. 2011;85:9824–33.PubMedCentralCrossRefPubMed
33.
go back to reference Gratton S, Cheynier R, Dumaurier MJ, Oksenhendler E, Wain-Hobson S. Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc Natl Acad Sci U S A. 2000;97:14566–71.PubMedCentralCrossRefPubMed Gratton S, Cheynier R, Dumaurier MJ, Oksenhendler E, Wain-Hobson S. Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc Natl Acad Sci U S A. 2000;97:14566–71.PubMedCentralCrossRefPubMed
34.
go back to reference Jung A, Maier R, Vartanian J-P, Bocharov G, Jung V, Fischer U, et al. Recombination: Multiply infected spleen cells in HIV patients. Nature. 2002;418:144.CrossRefPubMed Jung A, Maier R, Vartanian J-P, Bocharov G, Jung V, Fischer U, et al. Recombination: Multiply infected spleen cells in HIV patients. Nature. 2002;418:144.CrossRefPubMed
35.
go back to reference Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.PubMedCentralCrossRefPubMed Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.PubMedCentralCrossRefPubMed
Metadata
Title
Central memory CD4+ T cells are preferential targets of double infection by HIV-1
Authors
Aiman A. Haqqani
Samantha L. Marek
Jagadish Kumar
Miles Davenport
Heng Wang
John C. Tilton
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0415-0

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.