Skip to main content
Top
Published in: Seminars in Immunopathology 4/2017

01-06-2017 | Review

Cellular and molecular pathways of structural damage in rheumatoid arthritis

Authors: Ulrike Harre, Georg Schett

Published in: Seminars in Immunopathology | Issue 4/2017

Login to get access

Abstract

Structural damage of cartilage and bone tissue is a hallmark of rheumatoid arthritis (RA). The resulting joint destruction constitutes one of the major disease consequences for patients and creates a significant burden for the society. The main cells executing bone and cartilage degradation are osteoclasts and fibroblast-like synoviocytes, respectively. The function of both cell types is heavily influenced by the immune system. In the last decades, research has identified several mediators of structural damage, ranging from infiltrating immune cells and inflammatory cytokines to autoantibodies. These factors result in an inflammatory milieu in the affected joints which leads to an increased development and function of osteoclasts and the transformation of fibroblast-like synoviocytes towards a highly migratory and destructive phenotype. In addition, repair mechanisms mediated by osteoblasts and chondrocytes are strongly impaired by the presence of pro-inflammatory cytokines. This article will review the current knowledge on the mechanisms of joint inflammation and the destruction of bone and cartilage.
Literature
1.
go back to reference van de Sande MG, Baeten DL (2016) Immunopathology of synovitis: from histology to molecular pathways. Rheumatology (Oxford) 55:599–606CrossRef van de Sande MG, Baeten DL (2016) Immunopathology of synovitis: from histology to molecular pathways. Rheumatology (Oxford) 55:599–606CrossRef
2.
go back to reference Zerbini CA, et al (2016) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int Zerbini CA, et al (2016) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int
3.
5.
go back to reference Nakahama K (2010) Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 67:4001–4009CrossRefPubMed Nakahama K (2010) Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 67:4001–4009CrossRefPubMed
6.
go back to reference Cohen SB et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309CrossRefPubMed Cohen SB et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309CrossRefPubMed
7.
go back to reference Deodhar A et al (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62:569–574CrossRef Deodhar A et al (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62:569–574CrossRef
8.
go back to reference Jarrett SJ et al (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54:1410–1414CrossRefPubMed Jarrett SJ et al (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54:1410–1414CrossRefPubMed
9.
go back to reference Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 83:170–179CrossRef Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 83:170–179CrossRef
10.
11.
go back to reference Crotti TN et al (2015) Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015:281287CrossRefPubMedPubMedCentral Crotti TN et al (2015) Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015:281287CrossRefPubMedPubMedCentral
12.
go back to reference van Tuyl LH et al (2010) Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 69:1623–1628CrossRefPubMed van Tuyl LH et al (2010) Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 69:1623–1628CrossRefPubMed
13.
go back to reference Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMed Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMed
15.
go back to reference Sato K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682CrossRefPubMedPubMedCentral Sato K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682CrossRefPubMedPubMedCentral
16.
go back to reference Takayanagi H et al (1997) A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 240:279–286CrossRefPubMed Takayanagi H et al (1997) A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 240:279–286CrossRefPubMed
17.
go back to reference Danks L et al (2016) RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 75:1187–1195CrossRefPubMed Danks L et al (2016) RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 75:1187–1195CrossRefPubMed
18.
go back to reference Hashizume M et al (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47:1635–1640CrossRef Hashizume M et al (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47:1635–1640CrossRef
19.
20.
go back to reference Meednu N et al (2016) Production of RANKL by memory B cells: a link between B cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol 68:805–816CrossRefPubMedPubMedCentral Meednu N et al (2016) Production of RANKL by memory B cells: a link between B cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol 68:805–816CrossRefPubMedPubMedCentral
21.
go back to reference Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848CrossRefPubMedPubMedCentral Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848CrossRefPubMedPubMedCentral
22.
go back to reference Walsh NC et al (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24:1572–1585CrossRefPubMed Walsh NC et al (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24:1572–1585CrossRefPubMed
25.
go back to reference Yao Z et al (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855CrossRefPubMed Yao Z et al (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855CrossRefPubMed
26.
go back to reference Mori T et al (2011) IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712CrossRefPubMed Mori T et al (2011) IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712CrossRefPubMed
27.
go back to reference Wong PK et al (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168CrossRefPubMed Wong PK et al (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168CrossRefPubMed
28.
go back to reference Kotake S et al (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res 11:88–95CrossRefPubMed Kotake S et al (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res 11:88–95CrossRefPubMed
30.
go back to reference Mateen S et al (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171CrossRefPubMed Mateen S et al (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171CrossRefPubMed
31.
go back to reference Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 36:1118–1125CrossRefPubMed Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 36:1118–1125CrossRefPubMed
32.
go back to reference Jiang Y et al (2000) A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 43:1001–1009CrossRefPubMed Jiang Y et al (2000) A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 43:1001–1009CrossRefPubMed
33.
go back to reference Kitami S et al (2010) IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie 92:398–404CrossRefPubMed Kitami S et al (2010) IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie 92:398–404CrossRefPubMed
34.
go back to reference Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352CrossRefPubMedPubMedCentral Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352CrossRefPubMedPubMedCentral
35.
go back to reference Bax M et al (2014) The pathogenic potential of autoreactive antibodies in rheumatoid arthritis. Semin Immunopathol 36:313–325CrossRefPubMed Bax M et al (2014) The pathogenic potential of autoreactive antibodies in rheumatoid arthritis. Semin Immunopathol 36:313–325CrossRefPubMed
36.
go back to reference Baka Z et al (2012) Citrullination under physiological and pathological conditions. Joint Bone Spine 79:431–436CrossRefPubMed Baka Z et al (2012) Citrullination under physiological and pathological conditions. Joint Bone Spine 79:431–436CrossRefPubMed
37.
go back to reference Toes RE, Huizinga TJ (2015) Update on autoantibodies to modified proteins. Curr Opin Rheumatol 27:262–267CrossRefPubMed Toes RE, Huizinga TJ (2015) Update on autoantibodies to modified proteins. Curr Opin Rheumatol 27:262–267CrossRefPubMed
38.
go back to reference Amara K et al (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210:445–455CrossRefPubMedPubMedCentral Amara K et al (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210:445–455CrossRefPubMedPubMedCentral
39.
go back to reference Van Steendam K et al (2010) Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res Ther 12:R132CrossRefPubMedPubMedCentral Van Steendam K et al (2010) Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res Ther 12:R132CrossRefPubMedPubMedCentral
40.
go back to reference Mathsson L et al (2006) Immune complexes from rheumatoid arthritis synovial fluid induce FcgammaRIIa dependent and rheumatoid factor correlated production of tumour necrosis factor-alpha by peripheral blood mononuclear cells. Arthritis Res Ther 8:R64CrossRefPubMedPubMedCentral Mathsson L et al (2006) Immune complexes from rheumatoid arthritis synovial fluid induce FcgammaRIIa dependent and rheumatoid factor correlated production of tumour necrosis factor-alpha by peripheral blood mononuclear cells. Arthritis Res Ther 8:R64CrossRefPubMedPubMedCentral
41.
go back to reference Clavel C et al (2008) Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum 58:678–688CrossRefPubMed Clavel C et al (2008) Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum 58:678–688CrossRefPubMed
42.
go back to reference Lu MC et al (2010) Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum 62:1213–1223CrossRefPubMed Lu MC et al (2010) Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum 62:1213–1223CrossRefPubMed
43.
go back to reference Harre U et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802CrossRefPubMedPubMedCentral Harre U et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802CrossRefPubMedPubMedCentral
44.
go back to reference Krishnamurthy A et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729CrossRefPubMed Krishnamurthy A et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729CrossRefPubMed
45.
go back to reference Harre U et al (2012) Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 45:612–619CrossRefPubMed Harre U et al (2012) Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 45:612–619CrossRefPubMed
46.
go back to reference Seeling M et al (2013) Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A 110:10729–10734CrossRefPubMedPubMedCentral Seeling M et al (2013) Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A 110:10729–10734CrossRefPubMedPubMedCentral
48.
go back to reference Arnold JN et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMed Arnold JN et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50CrossRefPubMed
49.
go back to reference Bohm S et al (2012) The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 34:443–453CrossRefPubMed Bohm S et al (2012) The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 34:443–453CrossRefPubMed
50.
go back to reference Scherer HU et al (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62:1620–1629CrossRefPubMed Scherer HU et al (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62:1620–1629CrossRefPubMed
51.
go back to reference Pfeifle R, et al (2016) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol Pfeifle R, et al (2016) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol
52.
go back to reference van der Woude D et al (2010) Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 69:1554–1561CrossRefPubMed van der Woude D et al (2010) Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 69:1554–1561CrossRefPubMed
53.
go back to reference Kokkonen H et al (2011) Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther 13:R13CrossRefPubMedPubMedCentral Kokkonen H et al (2011) Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther 13:R13CrossRefPubMedPubMedCentral
54.
go back to reference Suwannalai P et al (2012) Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 64:1323–1328CrossRefPubMed Suwannalai P et al (2012) Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 64:1323–1328CrossRefPubMed
55.
go back to reference Rombouts Y et al (2015) Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis 74:234–241CrossRefPubMed Rombouts Y et al (2015) Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis 74:234–241CrossRefPubMed
56.
go back to reference Shi J et al (2011) Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci U S A 108:17372–17377CrossRefPubMedPubMedCentral Shi J et al (2011) Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci U S A 108:17372–17377CrossRefPubMedPubMedCentral
57.
go back to reference Kleyer A et al (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860CrossRefPubMed Kleyer A et al (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860CrossRefPubMed
58.
go back to reference Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233:301–312CrossRefPubMed Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233:301–312CrossRefPubMed
59.
go back to reference Baum R, Gravallese EM (2016) Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol 51:1–15CrossRefPubMed Baum R, Gravallese EM (2016) Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol 51:1–15CrossRefPubMed
60.
go back to reference Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355CrossRefPubMed Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355CrossRefPubMed
61.
go back to reference Gilbert L et al (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277:2695–2701CrossRefPubMed Gilbert L et al (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277:2695–2701CrossRefPubMed
62.
go back to reference Kaneki H et al (2006) Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 281:4326–4333CrossRefPubMed Kaneki H et al (2006) Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 281:4326–4333CrossRefPubMed
63.
go back to reference Yeremenko N et al (2015) Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol 67:2071–2075CrossRefPubMed Yeremenko N et al (2015) Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol 67:2071–2075CrossRefPubMed
64.
go back to reference Wang SY et al (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827CrossRefPubMed Wang SY et al (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827CrossRefPubMed
65.
go back to reference Glass DA 2nd et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764CrossRefPubMed Glass DA 2nd et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764CrossRefPubMed
66.
67.
go back to reference de Rooy DP et al (2013) Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 72:769–775CrossRefPubMed de Rooy DP et al (2013) Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 72:769–775CrossRefPubMed
68.
go back to reference Matzelle MM et al (2016) Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol 45:379–383CrossRefPubMed Matzelle MM et al (2016) Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol 45:379–383CrossRefPubMed
69.
go back to reference Stashenko P et al (1987) Interleukin-1 beta is a potent inhibitor of bone formation in vitro. J Bone Miner Res 2:559–565CrossRefPubMed Stashenko P et al (1987) Interleukin-1 beta is a potent inhibitor of bone formation in vitro. J Bone Miner Res 2:559–565CrossRefPubMed
71.
go back to reference Bhattaram P, Chandrasekharan U (2016) The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol Bhattaram P, Chandrasekharan U (2016) The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol
72.
go back to reference Schonfeld C et al (2015) Fibroblasts as pathogenic cells in rheumatic inflammation. Z Rheumatol 74:33–38CrossRefPubMed Schonfeld C et al (2015) Fibroblasts as pathogenic cells in rheumatic inflammation. Z Rheumatol 74:33–38CrossRefPubMed
73.
go back to reference Neumann E et al (2010) Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16:458–468CrossRefPubMed Neumann E et al (2010) Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16:458–468CrossRefPubMed
75.
go back to reference Kim KW et al (2015) Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 185:3011–3024CrossRefPubMed Kim KW et al (2015) Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 185:3011–3024CrossRefPubMed
78.
go back to reference Karouzakis E et al (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:3613–3622CrossRefPubMed Karouzakis E et al (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:3613–3622CrossRefPubMed
79.
go back to reference Diermeier S et al (2014) TNFalpha signalling primes chromatin for NF-kappaB binding and induces rapid and widespread nucleosome repositioning. Genome Biol 15:536CrossRefPubMedPubMedCentral Diermeier S et al (2014) TNFalpha signalling primes chromatin for NF-kappaB binding and induces rapid and widespread nucleosome repositioning. Genome Biol 15:536CrossRefPubMedPubMedCentral
80.
go back to reference Sherwood JC et al (2014) Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today 19:1172–1177CrossRefPubMed Sherwood JC et al (2014) Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today 19:1172–1177CrossRefPubMed
Metadata
Title
Cellular and molecular pathways of structural damage in rheumatoid arthritis
Authors
Ulrike Harre
Georg Schett
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 4/2017
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-017-0634-0

Other articles of this Issue 4/2017

Seminars in Immunopathology 4/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.