Skip to main content
Top
Published in: Angiogenesis 1/2009

01-03-2009 | Original Paper

Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature

Authors: Valentina Fogal, Kazuki N. Sugahara, Erkki Ruoslahti, Sven Christian

Published in: Angiogenesis | Issue 1/2009

Login to get access

Abstract

Nucleolin is specifically transported to the surface of proliferating endothelial cells in vitro and in vivo. In contrast to its well defined functions in the nucleus and cytoplasm, the function of cell surface nucleolin is poorly defined. We have previously identified the nucleolin-binding antibody NCL3 that specifically binds to cell surface nucleolin on angiogenic blood vessels in vivo and is internalized into the cell. Here, we show that NCL3 inhibits endothelial tube formation in vitro as well as angiogenesis in the matrigel plaque assay and subcutaneous tumor models in vivo. Intriguingly, the specific targeting of proliferating endothelial cells by NCL3 in subcutaneous tumor models leads to the normalization of the tumor vasculature and as a result to an increase in tumor oxygenation. Treatment of endothelial cells with anti-nucleolin antibody NCL3 leads to a decrease of mRNA levels of the anti-apoptotic molecule Bcl-2 and as a consequence induces endothelial cell apoptosis as evidenced by PARP cleavage. These data reveal a novel mode of action for anti-angiogenic therapy and identify cell surface nucleolin as a novel target for combinatorial chemotherapy.
Literature
5.
go back to reference Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400. doi:10.1038/nrd1381 PubMedCrossRef Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400. doi:10.​1038/​nrd1381 PubMedCrossRef
9.
go back to reference Ginisty H, Sicard H, Roger B et al (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772PubMed Ginisty H, Sicard H, Roger B et al (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772PubMed
10.
go back to reference Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922PubMed Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922PubMed
15.
go back to reference Sinclair JF, O’Brien AD (2002) Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277(4):2876–2885. doi:10.1074/jbc.M110230200 PubMedCrossRef Sinclair JF, O’Brien AD (2002) Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277(4):2876–2885. doi:10.​1074/​jbc.​M110230200 PubMedCrossRef
16.
go back to reference Fahling M, Steege A, Perlewitz A et al (2005) Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta 1731(1):32–40PubMed Fahling M, Steege A, Perlewitz A et al (2005) Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta 1731(1):32–40PubMed
17.
go back to reference Otake Y, Soundararajan S, Sengupta TK et al (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075PubMed Otake Y, Soundararajan S, Sengupta TK et al (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075PubMed
21.
go back to reference Ngo CV, Gee M, Akhtar N et al (2000) An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 11(4):201–210PubMed Ngo CV, Gee M, Akhtar N et al (2000) An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 11(4):201–210PubMed
23.
go back to reference Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000PubMed Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000PubMed
26.
go back to reference Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 19(4, Suppl 3):7–16 Williston ParkPubMed Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 19(4, Suppl 3):7–16 Williston ParkPubMed
27.
go back to reference Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13(13):3942–3950. doi:10.1158/1078-0432.CCR-07-0278 PubMedCrossRef Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13(13):3942–3950. doi:10.​1158/​1078-0432.​CCR-07-0278 PubMedCrossRef
29.
go back to reference Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMed
31.
go back to reference Herbst RS, O’Neill VJ, Fehrenbacher L et al (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 25(30):4743–4750. doi:10.1200/JCO.2007.12.3026 PubMedCrossRef Herbst RS, O’Neill VJ, Fehrenbacher L et al (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 25(30):4743–4750. doi:10.​1200/​JCO.​2007.​12.​3026 PubMedCrossRef
Metadata
Title
Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature
Authors
Valentina Fogal
Kazuki N. Sugahara
Erkki Ruoslahti
Sven Christian
Publication date
01-03-2009
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2009
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-009-9137-5

Other articles of this Issue 1/2009

Angiogenesis 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.