Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2016

Open Access 01-12-2016 | Research

Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration

Authors: Chae-Kyung Yoo, Jae-Yun Jeon, You-Jin Kim, Seong-Gon Kim, Kyung-Gyun Hwang

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2016

Login to get access

Abstract

Background

The aim of this study is to verify the feasibility of using silk fibroin (SF) as a potential membrane for guided bone regeneration (GBR).

Methods

Various cellular responses (i.e., cell attachment, viability, and proliferation) of osteoblast-like MG63 cells cultured on an SF membrane were quantified. After culturing on an SF membrane for 1, 5, and 7 days, the attachment and surface morphology of MG63 cells were examined by optical and scanning electron microscopy (SEM), cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was quantified using 4′,6-diamidino-2-phenylindole (DAPI) fluorescence staining.

Results

Optical microscopy revealed that MG63 cells cultured on the SF membrane proliferated over the 7-day observation period. The viability of cells cultured on SF membranes (SF group) and on control surfaces (control group) increased over time (P < 0.05); however, at respective time points, cell viability was not significantly different between the two groups (P > 0.05). In contrast, cell proliferation was significantly higher in the SF membrane group than in the control group at 7 days (P < 0.05).

Conclusions

These results suggest that silk fibroin is a biocompatible material that could be used as a suitable alternative barrier membrane for GBR.
Literature
1.
2.
go back to reference Caplanis N, Sigurdsson TJ, Rohrer MD, Wikesjö U (1996) Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofac Implants 12(5):634–642 Caplanis N, Sigurdsson TJ, Rohrer MD, Wikesjö U (1996) Effect of allogeneic, freeze-dried, demineralized bone matrix on guided bone regeneration in supra-alveolar peri-implant defects in dogs. Int J Oral Maxillofac Implants 12(5):634–642
3.
go back to reference Massaro D, Massaro GD (2004) Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Phys Lung Cell Mol Phys 287(6):L1154–L1159 Massaro D, Massaro GD (2004) Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Phys Lung Cell Mol Phys 287(6):L1154–L1159
4.
go back to reference Hurley LA, Stinchfield FE, Bassett A, Lyon WH (1959) The role of soft tissues in osteogenesis. J Bone Joint Surg Am 41:1243–1266PubMed Hurley LA, Stinchfield FE, Bassett A, Lyon WH (1959) The role of soft tissues in osteogenesis. J Bone Joint Surg Am 41:1243–1266PubMed
5.
6.
go back to reference Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007–1010CrossRefPubMed Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007–1010CrossRefPubMed
7.
go back to reference Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332–336CrossRefPubMed Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332–336CrossRefPubMed
8.
go back to reference Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014CrossRefPubMed Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014CrossRefPubMed
9.
go back to reference Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membraneprotected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 12(6):844–852 Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membraneprotected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 12(6):844–852
10.
go back to reference Zitzmann NU, Naef R, Schärer P (1996) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12(6):844–852 Zitzmann NU, Naef R, Schärer P (1996) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12(6):844–852
11.
go back to reference Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147CrossRefPubMed Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147CrossRefPubMed
12.
go back to reference Roccuzzo M, Bunino M, Needleman I, Sanz M (2002) Periodontal plastic surgery for treatment of localized gingival recessions: a systematic review. J Clin Periodontol 29(s3):178–194CrossRefPubMed Roccuzzo M, Bunino M, Needleman I, Sanz M (2002) Periodontal plastic surgery for treatment of localized gingival recessions: a systematic review. J Clin Periodontol 29(s3):178–194CrossRefPubMed
13.
go back to reference Simion M, Scarano A, Gionso L, Piattelli A (1996) Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants 11(6):735–742PubMed Simion M, Scarano A, Gionso L, Piattelli A (1996) Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants 11(6):735–742PubMed
14.
go back to reference Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937–1940CrossRefPubMed Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937–1940CrossRefPubMed
15.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefPubMed Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefPubMed
16.
go back to reference Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRefPubMed Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRefPubMed
17.
18.
go back to reference Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120(3):327–339CrossRefPubMed Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120(3):327–339CrossRefPubMed
19.
go back to reference Kieswetter K, Schwartz Z, Hummert T, Cochran D, Simpson J, Dean D, Boyan B (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55–63CrossRefPubMed Kieswetter K, Schwartz Z, Hummert T, Cochran D, Simpson J, Dean D, Boyan B (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55–63CrossRefPubMed
20.
go back to reference Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly‐L‐lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A 82(2):445–454CrossRefPubMed Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly‐L‐lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A 82(2):445–454CrossRefPubMed
21.
go back to reference Liu H-C, Lee I, Wang J-H, Yang S-H, Young T-H (2004) Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials 25(18):4047–4056CrossRefPubMed Liu H-C, Lee I, Wang J-H, Yang S-H, Young T-H (2004) Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials 25(18):4047–4056CrossRefPubMed
22.
go back to reference Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, James Kirkpatrick C (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976CrossRefPubMed Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, James Kirkpatrick C (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976CrossRefPubMed
24.
go back to reference Hämmerle CH, Jung RE, Feloutzis A (2002) A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol 29(s3):226–231CrossRefPubMed Hämmerle CH, Jung RE, Feloutzis A (2002) A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol 29(s3):226–231CrossRefPubMed
25.
go back to reference Minoura N, Tsukada M, Nagura M (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11(6):430–434CrossRefPubMed Minoura N, Tsukada M, Nagura M (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11(6):430–434CrossRefPubMed
26.
go back to reference Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK (2011) Biologic interaction of three-dimensional periodontal fibroblast spheroids with collagen-based and synthetic membranes. J Periodontol 82(5):790–797CrossRefPubMed Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK (2011) Biologic interaction of three-dimensional periodontal fibroblast spheroids with collagen-based and synthetic membranes. J Periodontol 82(5):790–797CrossRefPubMed
27.
go back to reference Carpio L, Loza J, Lynch S, Genco R (2000) Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J Periodontol 71(11):1743–1749CrossRefPubMed Carpio L, Loza J, Lynch S, Genco R (2000) Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J Periodontol 71(11):1743–1749CrossRefPubMed
28.
go back to reference Wang HL, Miyauchi M, Takata T (2002) Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodontal Res 37(5):340–344CrossRefPubMed Wang HL, Miyauchi M, Takata T (2002) Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodontal Res 37(5):340–344CrossRefPubMed
29.
go back to reference Song J-Y, Kim S-G, Lee J-W, Chae W-S, Kweon H, Jo Y-Y, Lee K-G, Lee Y-C, Choi J-Y, Kim J-Y (2011) Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(6):e26–e33CrossRefPubMed Song J-Y, Kim S-G, Lee J-W, Chae W-S, Kweon H, Jo Y-Y, Lee K-G, Lee Y-C, Choi J-Y, Kim J-Y (2011) Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(6):e26–e33CrossRefPubMed
30.
go back to reference Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Poly (D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23(4):1153–1160CrossRefPubMed Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, Qing T, Gao L (2002) Poly (D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 23(4):1153–1160CrossRefPubMed
31.
go back to reference Chen W, Wang WW, Shi XZ, Chen N (2013) Evaluation of the biocompatibility and cell segregation performance of acellular dermal matrix as barrier membrane on guided tissue regeneration in vitro. Shanghai Kou Qiang Yi Xue 22(3):260–264PubMed Chen W, Wang WW, Shi XZ, Chen N (2013) Evaluation of the biocompatibility and cell segregation performance of acellular dermal matrix as barrier membrane on guided tissue regeneration in vitro. Shanghai Kou Qiang Yi Xue 22(3):260–264PubMed
32.
go back to reference Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRefPubMed Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRefPubMed
33.
go back to reference Lee S-W, Kim S-G (2014) Membranes for the guided bone regeneration. Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 36(6):239–246 Lee S-W, Kim S-G (2014) Membranes for the guided bone regeneration. Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 36(6):239–246
34.
go back to reference Jang E-S, Park J-W, Kweon H, Lee K-G, Kang S-W, Baek D-H, Choi J-Y, Kim S-G (2010) Restoration of peri-implant defects in immediate implant installations by Choukroun platelet-rich fibrin and silk fibroin powder combination graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6):831–836CrossRefPubMed Jang E-S, Park J-W, Kweon H, Lee K-G, Kang S-W, Baek D-H, Choi J-Y, Kim S-G (2010) Restoration of peri-implant defects in immediate implant installations by Choukroun platelet-rich fibrin and silk fibroin powder combination graft. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(6):831–836CrossRefPubMed
35.
go back to reference Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk‐based biomaterials for bone formation. J Biomed Mater Res 54(1):139–148CrossRefPubMed Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk‐based biomaterials for bone formation. J Biomed Mater Res 54(1):139–148CrossRefPubMed
Metadata
Title
Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration
Authors
Chae-Kyung Yoo
Jae-Yun Jeon
You-Jin Kim
Seong-Gon Kim
Kyung-Gyun Hwang
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2016
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-016-0062-4

Other articles of this Issue 1/2016

Maxillofacial Plastic and Reconstructive Surgery 1/2016 Go to the issue