Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2012

Open Access 01-06-2012 | Research article

CD109, a TGF-β co-receptor, attenuates extracellular matrix production in scleroderma skin fibroblasts

Authors: Xiao-Yong Man, Kenneth W Finnson, Murray Baron, Anie Philip

Published in: Arthritis Research & Therapy | Issue 3/2012

Login to get access

Abstract

Introduction

Scleroderma or systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of skin and internal organs. Transforming growth factor beta (TGF-β) plays a key role in the pathogenesis of SSc fibrosis. We have previously identified CD109 as a novel TGF-β co-receptor that inhibits TGF-β signaling. The aim of the present study was to determine the role of CD109 in regulating extracellular matrix (ECM) production in human SSc skin fibroblasts.

Methods

CD109 expression was determined in skin tissue and cultured skin fibroblasts of SSc patients and normal healthy subjects, using immunofluorescence, western blot and RT-PCR. The effect of CD109 on ECM synthesis was determined by blocking CD109 expression using CD109-specific siRNA or addition of recombinant CD109 protein, and analyzing the expression of ECM components by western blot.

Results

The expression of CD109 proteinis markedly increased in SSc skin tissue in vivo and in SSc skin fibroblasts in vitro as compared to their normal counterparts. Importantly, both SSc and normal skin fibroblasts transfected with CD109-specific siRNA display increased fibronectin, collagen type I and CCN2 protein levels and enhanced Smad2/3 phosphorylation compared with control siRNA transfectants. Furthermore, addition of recombinant CD109 protein decreases TGF-β1-induced fibronectin, collagen type I and CCN2 levels in SSc and normal fibroblasts.

Conclusion

The upregulation of CD109 protein in SSc may represent an adaptation or consequence of aberrant TGF-β signaling in SSc. Our finding that CD109 is able to decrease excessive ECM production in SSc fibroblasts suggest that this molecule has potential therapeutic value for the treatment of SSc.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wick G, Backovic A, Rabensteiner E, Plank N, Schwendtner C, Sgonc R: The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 2010, 31: 110-119. 10.1016/j.it.2009.12.001.PubMedCentralCrossRefPubMed Wick G, Backovic A, Rabensteiner E, Plank N, Schwendtner C, Sgonc R: The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 2010, 31: 110-119. 10.1016/j.it.2009.12.001.PubMedCentralCrossRefPubMed
2.
go back to reference Rosenbloom J, Castro SV, Jimenez SA: Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med. 2010, 152: 159-166.CrossRefPubMed Rosenbloom J, Castro SV, Jimenez SA: Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med. 2010, 152: 159-166.CrossRefPubMed
3.
go back to reference Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M: Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010, 14: 1241-1254. 10.1111/j.1582-4934.2010.01027.x.PubMedCentralCrossRefPubMed Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M: Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010, 14: 1241-1254. 10.1111/j.1582-4934.2010.01027.x.PubMedCentralCrossRefPubMed
4.
go back to reference Hachulla E, Launay D: Diagnosis and classification of systemic sclerosis. Clin Rev Allergy Immunol. 2011, 40: 78-83. 10.1007/s12016-010-8198-y.CrossRefPubMed Hachulla E, Launay D: Diagnosis and classification of systemic sclerosis. Clin Rev Allergy Immunol. 2011, 40: 78-83. 10.1007/s12016-010-8198-y.CrossRefPubMed
5.
go back to reference Varga J, Pasche B: Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009, 5: 200-206. 10.1038/nrrheum.2009.26.PubMedCentralCrossRefPubMed Varga J, Pasche B: Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009, 5: 200-206. 10.1038/nrrheum.2009.26.PubMedCentralCrossRefPubMed
6.
go back to reference Szodoray P, Kiss E: Progressive systemic sclerosis - from the molecular background to innovative therapies. Front Biosci (Elite Ed). 2010, 2: 521-525.CrossRef Szodoray P, Kiss E: Progressive systemic sclerosis - from the molecular background to innovative therapies. Front Biosci (Elite Ed). 2010, 2: 521-525.CrossRef
7.
8.
go back to reference Postlethwaite AE, Harris LJ, Raza SH, Kodura S, Akhigbe T: Pharmacotherapy of systemic sclerosis. Expert Opin Pharmacother. 2010, 11: 789-806. 10.1517/14656561003592177.PubMedCentralCrossRefPubMed Postlethwaite AE, Harris LJ, Raza SH, Kodura S, Akhigbe T: Pharmacotherapy of systemic sclerosis. Expert Opin Pharmacother. 2010, 11: 789-806. 10.1517/14656561003592177.PubMedCentralCrossRefPubMed
9.
go back to reference Asano Y: Future treatments in systemic sclerosis. J Dermatol. 2010, 37: 54-70. 10.1111/j.1346-8138.2009.00758.x.CrossRefPubMed Asano Y: Future treatments in systemic sclerosis. J Dermatol. 2010, 37: 54-70. 10.1111/j.1346-8138.2009.00758.x.CrossRefPubMed
10.
go back to reference Wu MY, Hill CS: TGF-β superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009, 16: 329-343. 10.1016/j.devcel.2009.02.012.CrossRefPubMed Wu MY, Hill CS: TGF-β superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009, 16: 329-343. 10.1016/j.devcel.2009.02.012.CrossRefPubMed
11.
go back to reference Wharton K, Derynck R: TGF-β family signaling: novel insights in development and disease. Development. 2009, 136: 3691-3697. 10.1242/dev.040584.CrossRefPubMed Wharton K, Derynck R: TGF-β family signaling: novel insights in development and disease. Development. 2009, 136: 3691-3697. 10.1242/dev.040584.CrossRefPubMed
12.
go back to reference Moustakas A, Heldin CH: The regulation of TGFβ signal transduction. Development. 2009, 136: 3699-3714. 10.1242/dev.030338.CrossRefPubMed Moustakas A, Heldin CH: The regulation of TGFβ signal transduction. Development. 2009, 136: 3699-3714. 10.1242/dev.030338.CrossRefPubMed
13.
go back to reference Jinnin M: Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010, 37: 11-25. 10.1111/j.1346-8138.2009.00738.x.CrossRefPubMed Jinnin M: Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010, 37: 11-25. 10.1111/j.1346-8138.2009.00738.x.CrossRefPubMed
14.
go back to reference Varga J, Whitfield ML: Transforming growth factor-β in systemic sclerosis (scleroderma). Front Biosci (Schol Ed). 2009, 1: 226-235.CrossRef Varga J, Whitfield ML: Transforming growth factor-β in systemic sclerosis (scleroderma). Front Biosci (Schol Ed). 2009, 1: 226-235.CrossRef
15.
go back to reference Ihn H: Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008, 49: 103-113. 10.1016/j.jdermsci.2007.05.014.CrossRefPubMed Ihn H: Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008, 49: 103-113. 10.1016/j.jdermsci.2007.05.014.CrossRefPubMed
16.
go back to reference Pannu J, Trojanowska M: Recent advances in fibroblast signaling and biology in scleroderma. Curr Opin Rheumatol. 2004, 16: 739-745. 10.1097/01.bor.0000137894.63091.1a.CrossRefPubMed Pannu J, Trojanowska M: Recent advances in fibroblast signaling and biology in scleroderma. Curr Opin Rheumatol. 2004, 16: 739-745. 10.1097/01.bor.0000137894.63091.1a.CrossRefPubMed
17.
go back to reference Ihn H, Yamane K, Kubo M, Tamaki K: Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum. 2001, 44: 474-480. 10.1002/1529-0131(200102)44:2<474::AID-ANR67>3.0.CO;2-#.CrossRefPubMed Ihn H, Yamane K, Kubo M, Tamaki K: Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum. 2001, 44: 474-480. 10.1002/1529-0131(200102)44:2<474::AID-ANR67>3.0.CO;2-#.CrossRefPubMed
18.
go back to reference Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M: Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol. 1998, 110: 47-51. 10.1046/j.1523-1747.1998.00073.x.CrossRefPubMed Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M: Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol. 1998, 110: 47-51. 10.1046/j.1523-1747.1998.00073.x.CrossRefPubMed
19.
go back to reference Kubo M, Ihn H, Yamane K, Tamaki K: Upregulated expression of transforming growth factor-β receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol. 2002, 29: 2558-2564.PubMed Kubo M, Ihn H, Yamane K, Tamaki K: Upregulated expression of transforming growth factor-β receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol. 2002, 29: 2558-2564.PubMed
20.
go back to reference Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clermont PJ: Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA. 2002, 99: 3908-3913. 10.1073/pnas.062010399.PubMedCentralCrossRefPubMed Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clermont PJ: Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA. 2002, 99: 3908-3913. 10.1073/pnas.062010399.PubMedCentralCrossRefPubMed
21.
go back to reference Pannu J, Gore-Hyer E, Yamanaka M, Smith EA, Rubinchik S, Dong JY, Jablonska S, Blaszczyk M, Trojanowska M: An increased transforming growth factor β receptor type I:type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma. Arthritis Rheum. 2004, 50: 1566-1577. 10.1002/art.20225.CrossRefPubMed Pannu J, Gore-Hyer E, Yamanaka M, Smith EA, Rubinchik S, Dong JY, Jablonska S, Blaszczyk M, Trojanowska M: An increased transforming growth factor β receptor type I:type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma. Arthritis Rheum. 2004, 50: 1566-1577. 10.1002/art.20225.CrossRefPubMed
22.
go back to reference Thatcher JD: The TGF-β signal transduction pathway. Sci Signal. 2010, 3: tr4-10.1126/scisignal.3119tr4.PubMed Thatcher JD: The TGF-β signal transduction pathway. Sci Signal. 2010, 3: tr4-10.1126/scisignal.3119tr4.PubMed
23.
go back to reference Massague J, Gomis RR: The logic of TGF-β signaling. FEBS Lett. 2006, 580: 2811-2820. 10.1016/j.febslet.2006.04.033.CrossRefPubMed Massague J, Gomis RR: The logic of TGF-β signaling. FEBS Lett. 2006, 580: 2811-2820. 10.1016/j.febslet.2006.04.033.CrossRefPubMed
24.
go back to reference Shi Y, Massague J: Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed Shi Y, Massague J: Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed
25.
go back to reference Schmierer B, Hill CS: TGFβ-Smad signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007, 8: 970-982. 10.1038/nrm2297.CrossRefPubMed Schmierer B, Hill CS: TGFβ-Smad signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007, 8: 970-982. 10.1038/nrm2297.CrossRefPubMed
26.
go back to reference Ross S, Hill CS: How the Smads regulate transcription. Int J Biochem Cell Biol. 2008, 40: 383-408. 10.1016/j.biocel.2007.09.006.CrossRefPubMed Ross S, Hill CS: How the Smads regulate transcription. Int J Biochem Cell Biol. 2008, 40: 383-408. 10.1016/j.biocel.2007.09.006.CrossRefPubMed
27.
go back to reference Leask A: Targeting the TGFβ, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell Signal. 2008, 20: 1409-1414. 10.1016/j.cellsig.2008.01.006.CrossRefPubMed Leask A: Targeting the TGFβ, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell Signal. 2008, 20: 1409-1414. 10.1016/j.cellsig.2008.01.006.CrossRefPubMed
28.
go back to reference Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu X-F, Schuh AC: Cell surface antigen CD109 is a novel member of the alpha 2 macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 2002, 99: 1683-1691. 10.1182/blood.V99.5.1683.CrossRefPubMed Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu X-F, Schuh AC: Cell surface antigen CD109 is a novel member of the alpha 2 macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 2002, 99: 1683-1691. 10.1182/blood.V99.5.1683.CrossRefPubMed
29.
go back to reference Solomon KR, Sharma P, Chan M, Morrison PT, Finberg RW: CD109 represents a novel branch of the α2-macroglobulin/complement gene family. Gene. 2004, 327: 171-183. 10.1016/j.gene.2003.11.025.CrossRefPubMed Solomon KR, Sharma P, Chan M, Morrison PT, Finberg RW: CD109 represents a novel branch of the α2-macroglobulin/complement gene family. Gene. 2004, 327: 171-183. 10.1016/j.gene.2003.11.025.CrossRefPubMed
30.
go back to reference Hagiwara S, Murakumo Y, Mii S, Shigetomi T, Yamamoto N, Furue H, Ueda M, Takahashi M: Processing of CD109 by furin and its role in the regulation of TGF-β signaling. Oncogene. 2010, 29: 2181-2191. 10.1038/onc.2009.506.CrossRefPubMed Hagiwara S, Murakumo Y, Mii S, Shigetomi T, Yamamoto N, Furue H, Ueda M, Takahashi M: Processing of CD109 by furin and its role in the regulation of TGF-β signaling. Oncogene. 2010, 29: 2181-2191. 10.1038/onc.2009.506.CrossRefPubMed
31.
go back to reference Ohshima Y, Yajima I, Kumasaka MY, Yanagishita T, Watanabe D, Takahashi M, Inoue Y, Ihn H, Matsumoto Y, Kato M: CD109 expression levels in malignant melanoma. J Dermatol Sci. 2009, 57: 140-142.CrossRef Ohshima Y, Yajima I, Kumasaka MY, Yanagishita T, Watanabe D, Takahashi M, Inoue Y, Ihn H, Matsumoto Y, Kato M: CD109 expression levels in malignant melanoma. J Dermatol Sci. 2009, 57: 140-142.CrossRef
32.
go back to reference Hockla A, Radisky DC, Radisky ES: Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat. 2009, 124: 27-38.PubMedCentralCrossRefPubMed Hockla A, Radisky DC, Radisky ES: Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat. 2009, 124: 27-38.PubMedCentralCrossRefPubMed
33.
go back to reference Hasegawa M, Moritani S, Murakumo Y, Sato T, Hagiwara S, Suzuki C, Mii S, Jijiwa M, Enomoto A, Asai N, Ishihara S, Takahashi M: CD109 expression in basal-like breast carcinoma. Pathol Int. 2008, 58: 288-294. 10.1111/j.1440-1827.2008.02225.x.CrossRefPubMed Hasegawa M, Moritani S, Murakumo Y, Sato T, Hagiwara S, Suzuki C, Mii S, Jijiwa M, Enomoto A, Asai N, Ishihara S, Takahashi M: CD109 expression in basal-like breast carcinoma. Pathol Int. 2008, 58: 288-294. 10.1111/j.1440-1827.2008.02225.x.CrossRefPubMed
34.
go back to reference Hagiwara S, Murakumo Y, Sato T, Shigetom T, Mitsudo K, Tohnai I, Ueda M, Takahashi M: Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity. Cancer Sci. 2008, 99: 1916-1923.CrossRefPubMed Hagiwara S, Murakumo Y, Sato T, Shigetom T, Mitsudo K, Tohnai I, Ueda M, Takahashi M: Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity. Cancer Sci. 2008, 99: 1916-1923.CrossRefPubMed
35.
go back to reference Hasegawa M, Hagiwara S, Sato T, Jijiwa M, Murakumo Y, Maeda M, Moritani S, Ichihara S, Takahashi M: CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells. Pathol Int. 2007, 57: 245-250. 10.1111/j.1440-1827.2007.02097.x.CrossRefPubMed Hasegawa M, Hagiwara S, Sato T, Jijiwa M, Murakumo Y, Maeda M, Moritani S, Ichihara S, Takahashi M: CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells. Pathol Int. 2007, 57: 245-250. 10.1111/j.1440-1827.2007.02097.x.CrossRefPubMed
36.
go back to reference Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A: The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta Mol Cell Res. 2011, 1813: 742-753. 10.1016/j.bbamcr.2011.01.028.CrossRef Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A: The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta Mol Cell Res. 2011, 1813: 742-753. 10.1016/j.bbamcr.2011.01.028.CrossRef
37.
go back to reference Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A: Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. FASEB J. 2006, 20: 1525-1527. 10.1096/fj.05-5229fje.CrossRefPubMed Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S, Bizet AA, Philip A: Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. FASEB J. 2006, 20: 1525-1527. 10.1096/fj.05-5229fje.CrossRefPubMed
38.
go back to reference Lonzetti LS, Joyal F, Raynauld JP, Roussin A, Goulet JR, Rich E, Choquette D, Raymond Y, Senecal JL: Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 2001, 44: 735-736. 10.1002/1529-0131(200103)44:3<735::AID-ANR125>3.0.CO;2-F.CrossRefPubMed Lonzetti LS, Joyal F, Raynauld JP, Roussin A, Goulet JR, Rich E, Choquette D, Raymond Y, Senecal JL: Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 2001, 44: 735-736. 10.1002/1529-0131(200103)44:3<735::AID-ANR125>3.0.CO;2-F.CrossRefPubMed
39.
go back to reference Tam B, Germain L, Philip A: TGF-β receptor expression on human keratinocytes: a 150 kDa GPI-anchored TGF-β1 binding protein forms a heteromeric complex with type I and type II receptors. J Cell Biochem. 1998, 70: 573-586. 10.1002/(SICI)1097-4644(19980915)70:4<573::AID-JCB13>3.0.CO;2-I.CrossRefPubMed Tam B, Germain L, Philip A: TGF-β receptor expression on human keratinocytes: a 150 kDa GPI-anchored TGF-β1 binding protein forms a heteromeric complex with type I and type II receptors. J Cell Biochem. 1998, 70: 573-586. 10.1002/(SICI)1097-4644(19980915)70:4<573::AID-JCB13>3.0.CO;2-I.CrossRefPubMed
40.
go back to reference Tam BYY, Finnson KW, Philip A: Glycosylphosphatidylinositol-anchored proteins regulate transforming growth factor-β signaling in human keratinocytes. J Biol Chem. 2003, 278: 49610-49617. 10.1074/jbc.M308492200.CrossRefPubMed Tam BYY, Finnson KW, Philip A: Glycosylphosphatidylinositol-anchored proteins regulate transforming growth factor-β signaling in human keratinocytes. J Biol Chem. 2003, 278: 49610-49617. 10.1074/jbc.M308492200.CrossRefPubMed
41.
go back to reference Tam B, Philip A: Transforming growth factor-β receptor expression on human skin fibroblasts: dimeric complex formation of type I and type II receptors and identification of glycosyl phosphatidylinositol-anchored transforming growth factor-β binding proteins. J Cell Physiol. 1998, 176: 553-564. 10.1002/(SICI)1097-4652(199809)176:3<553::AID-JCP12>3.0.CO;2-0.CrossRefPubMed Tam B, Philip A: Transforming growth factor-β receptor expression on human skin fibroblasts: dimeric complex formation of type I and type II receptors and identification of glycosyl phosphatidylinositol-anchored transforming growth factor-β binding proteins. J Cell Physiol. 1998, 176: 553-564. 10.1002/(SICI)1097-4652(199809)176:3<553::AID-JCP12>3.0.CO;2-0.CrossRefPubMed
42.
go back to reference Tam B, Larouche D, Germain L, Hooper N, Philip A: Characterization of a 150 kDa accessory receptor for TGF-β1 on keratinocytes: direct evidence for a GPI anchor and ligand binding of the released form. J Cell Biochem. 2001, 83: 494-507. 10.1002/jcb.1074.CrossRefPubMed Tam B, Larouche D, Germain L, Hooper N, Philip A: Characterization of a 150 kDa accessory receptor for TGF-β1 on keratinocytes: direct evidence for a GPI anchor and ligand binding of the released form. J Cell Biochem. 2001, 83: 494-507. 10.1002/jcb.1074.CrossRefPubMed
43.
go back to reference Ihn H, Yamane K, Asano Y, Jinnin M, Tamaki K: Constitutively phosphorylated Smad3 interacts with Sp1 and p300 in scleroderma fibroblasts. Rheumatology (Oxford). 2006, 45: 157-165.CrossRef Ihn H, Yamane K, Asano Y, Jinnin M, Tamaki K: Constitutively phosphorylated Smad3 interacts with Sp1 and p300 in scleroderma fibroblasts. Rheumatology (Oxford). 2006, 45: 157-165.CrossRef
44.
go back to reference Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K: Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest. 2004, 113: 253-264.PubMedCentralCrossRefPubMed Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K: Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest. 2004, 113: 253-264.PubMedCentralCrossRefPubMed
45.
go back to reference Sargent JL, Milano A, Bhattacharyya S, Varga J, Connolly MK, Chang HY, Whitfield ML: A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010, 130: 694-705. 10.1038/jid.2009.318.CrossRefPubMed Sargent JL, Milano A, Bhattacharyya S, Varga J, Connolly MK, Chang HY, Whitfield ML: A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010, 130: 694-705. 10.1038/jid.2009.318.CrossRefPubMed
46.
go back to reference Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, Whitfield ML: Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE. 2008, 3: e2696-10.1371/journal.pone.0002696.PubMedCentralCrossRefPubMed Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, Whitfield ML: Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE. 2008, 3: e2696-10.1371/journal.pone.0002696.PubMedCentralCrossRefPubMed
47.
go back to reference Leask A, Abraham DJ, Finlay DR, Holmes A, Pennington D, Shi-Wen X, Chen Y, Venstrom K, Dou X, Ponticos M, Black C, Bernabeu C, Jackman JK, Findell PR, Conolly MK: Dysregulation of transforming growth factor β signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum. 2002, 46: 1857-1865. 10.1002/art.10333.CrossRefPubMed Leask A, Abraham DJ, Finlay DR, Holmes A, Pennington D, Shi-Wen X, Chen Y, Venstrom K, Dou X, Ponticos M, Black C, Bernabeu C, Jackman JK, Findell PR, Conolly MK: Dysregulation of transforming growth factor β signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum. 2002, 46: 1857-1865. 10.1002/art.10333.CrossRefPubMed
48.
go back to reference Morris E, Chrobak I, Bujor A, Hant F, Mummery C, Ten Dijke P, Trojanowska M: Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. J Cell Physiol. 2011, 226: 3340-3348. 10.1002/jcp.22690.PubMedCentralCrossRefPubMed Morris E, Chrobak I, Bujor A, Hant F, Mummery C, Ten Dijke P, Trojanowska M: Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. J Cell Physiol. 2011, 226: 3340-3348. 10.1002/jcp.22690.PubMedCentralCrossRefPubMed
49.
go back to reference Holmes AM, Ponticos M, Shi-Wen X, Denton CP, Abraham DJ: Elevated CCN2 expression in scleroderma: a putative role for the TGF-β accessory receptors TGFβRIII and endoglin. J Cell Commun Signal. 2011, 5: 173-177. 10.1007/s12079-011-0140-4.PubMedCentralCrossRefPubMed Holmes AM, Ponticos M, Shi-Wen X, Denton CP, Abraham DJ: Elevated CCN2 expression in scleroderma: a putative role for the TGF-β accessory receptors TGFβRIII and endoglin. J Cell Commun Signal. 2011, 5: 173-177. 10.1007/s12079-011-0140-4.PubMedCentralCrossRefPubMed
50.
go back to reference Kubo M, Ihn H, Yamane K, Tamaki K: Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum. 2001, 44: 731-734. 10.1002/1529-0131(200103)44:3<731::AID-ANR124>3.0.CO;2-U.CrossRefPubMed Kubo M, Ihn H, Yamane K, Tamaki K: Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum. 2001, 44: 731-734. 10.1002/1529-0131(200103)44:3<731::AID-ANR124>3.0.CO;2-U.CrossRefPubMed
51.
go back to reference Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, Lafyatis R: Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS ONE. 2010, 5: Pendergrass SA, Hayes E, Farina G, Lemaire R, Farber HW, Whitfield ML, Lafyatis R: Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS ONE. 2010, 5:
52.
go back to reference Sato T, Murakumo Y, Hagiwara S, Jijiwa M, Suzuki C, Yatabe Y, Takahashi M: High-level expression of CD109 is frequently detected in lung squamous cell carcinomas. Pathol Int. 2007, 57: 719-724. 10.1111/j.1440-1827.2007.02168.x.CrossRefPubMed Sato T, Murakumo Y, Hagiwara S, Jijiwa M, Suzuki C, Yatabe Y, Takahashi M: High-level expression of CD109 is frequently detected in lung squamous cell carcinomas. Pathol Int. 2007, 57: 719-724. 10.1111/j.1440-1827.2007.02168.x.CrossRefPubMed
53.
go back to reference Zhang JM, Hashimoto M, Kawai K, Murakumo Y, Sato T, Ichihara M, Nakamura S, Takahashi M: CD109 expression in squamous cell carcinoma of the uterine cervix. Pathol Int. 2005, 55: 165-169. 10.1111/j.1440-1827.2005.01807.x.CrossRefPubMed Zhang JM, Hashimoto M, Kawai K, Murakumo Y, Sato T, Ichihara M, Nakamura S, Takahashi M: CD109 expression in squamous cell carcinoma of the uterine cervix. Pathol Int. 2005, 55: 165-169. 10.1111/j.1440-1827.2005.01807.x.CrossRefPubMed
54.
go back to reference Furst DE, Clements PJ, Steen VD, Medsger TA, Masi AT, D'Angelo WA, Lachenbruch PA, Grau RG, Seibold JR: The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J Rheumatol. 1998, 25: 84-88.PubMed Furst DE, Clements PJ, Steen VD, Medsger TA, Masi AT, D'Angelo WA, Lachenbruch PA, Grau RG, Seibold JR: The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J Rheumatol. 1998, 25: 84-88.PubMed
Metadata
Title
CD109, a TGF-β co-receptor, attenuates extracellular matrix production in scleroderma skin fibroblasts
Authors
Xiao-Yong Man
Kenneth W Finnson
Murray Baron
Anie Philip
Publication date
01-06-2012
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 3/2012
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar3877

Other articles of this Issue 3/2012

Arthritis Research & Therapy 3/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.