Skip to main content
Top
Published in: BMC Neurology 1/2020

Open Access 01-12-2020 | Care | Research article

Evaluation of regional ventilation by electric impedance tomography during percutaneous dilatational tracheostomy in neurocritical care: a pilot study

Authors: Vera Spatenkova, Eckhard Teschner, Jaroslav Jedlicka

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Percutaneous dilatational tracheostomy (PDT) has become a widely performed technique in neurocritical care, which is however known to be accompanied by some risks to the patient. The aim of this pilot study was to assess the derecruitment effects of PDT with the electric impedance tomography (EIT) during the PDT procedure in neurocritical care.

Methods

The prospective observational pilot study investigated 11 adult, intubated, mechanically ventilated patients with acute brain disease. We recorded EIT data to determine regional ventilation delay standard deviation (RVD SD), compliance win (CW) and loss (CL), end-expiratory lung impedance (EELI), with the EIT belt placed at the level of Th 4 before, during and after the PDT, performed in the standard PDT position ensuring hyperextension of the neck.

Results

From 11 patients, we finally analyzed EIT data in 6 patients - EIT data of 5 patients have been excluded due to the insufficient EIT recordings. The mean RVD SD post-PDT decreased to 7.00 ± 1.29% from 7.33 ± 1.89%. The mean post-PDT CW was 27.33 ± 15.81 and PDT CL 6.33 ± 6.55. Only in one patient, where the trachea was open for 170 s, was a massive dorsal collapse (∆EELI − 25%) detected. In other patients, the trachea was open from 15 to 50 s.

Conclusions

This pilot study demonstrated the feasibility of EIT to detect early lung derecruitment occurring due to the PDT procedure. The ability to detect regional changes in ventilation could be helpful in predicting further progression of ventilation impairment and subsequent hypoxemia, to consider optimal ventilation regimes or time-schedule and type of recruitment maneuvres required after the PDT.
Literature
1.
go back to reference Ditz C, Wojak JF, Smith E, Abusamha A, Tronnier VM, Gliemroth J, Küchler JN. Safety of percutaneous dilatational tracheostomy in patients with acute brain injury and reduced PaO2/FiO2 ratio-retrospective analysis of 54 patients. World Neurosurg. 2017;105:102–7.CrossRef Ditz C, Wojak JF, Smith E, Abusamha A, Tronnier VM, Gliemroth J, Küchler JN. Safety of percutaneous dilatational tracheostomy in patients with acute brain injury and reduced PaO2/FiO2 ratio-retrospective analysis of 54 patients. World Neurosurg. 2017;105:102–7.CrossRef
2.
go back to reference Browd SR, MacDonald JD. Percutaneous dilational tracheostomy in neurosurgical patients. Neurocrit Care. 2005;2:268–73.CrossRef Browd SR, MacDonald JD. Percutaneous dilational tracheostomy in neurosurgical patients. Neurocrit Care. 2005;2:268–73.CrossRef
3.
go back to reference Kuechler JN, Abusamha A, Ziemann S, Tronnier VM, Gliemroth J. Impact of percutaneous dilatational tracheostomy in brain injured patients. Clin Neurol Neurosurg. 2015;137:137–41.CrossRef Kuechler JN, Abusamha A, Ziemann S, Tronnier VM, Gliemroth J. Impact of percutaneous dilatational tracheostomy in brain injured patients. Clin Neurol Neurosurg. 2015;137:137–41.CrossRef
4.
go back to reference Flint AC, Midde R, Rao VA, Lasman TE, Ho PT. Bedside ultrasound screening for pretracheal vascular structures may minimize the risks of percutaneous dilatational tracheostomy. Neurocrit Care. 2009;11:372–6.CrossRef Flint AC, Midde R, Rao VA, Lasman TE, Ho PT. Bedside ultrasound screening for pretracheal vascular structures may minimize the risks of percutaneous dilatational tracheostomy. Neurocrit Care. 2009;11:372–6.CrossRef
5.
go back to reference Gobatto ALN, Besen BAMP, Tierno PFGMM, Mendes PV, Cadamuro F, Joelsons D, Melro L, Carmona MJC, Santori G, Pelosi P, Park M, Malbouisson LMS. Ultrasound-guided percutaneous dilational tracheostomy versus bronchoscopy-guided percutaneous dilational tracheostomy in critically ill patients (TRACHUS): a randomized noninferiority controlled trial. Intensive Care Med. 2016;42:342–51.CrossRef Gobatto ALN, Besen BAMP, Tierno PFGMM, Mendes PV, Cadamuro F, Joelsons D, Melro L, Carmona MJC, Santori G, Pelosi P, Park M, Malbouisson LMS. Ultrasound-guided percutaneous dilational tracheostomy versus bronchoscopy-guided percutaneous dilational tracheostomy in critically ill patients (TRACHUS): a randomized noninferiority controlled trial. Intensive Care Med. 2016;42:342–51.CrossRef
6.
go back to reference Gadkaree SK, Schwartz D, Gerold K, Kim Y. Use of bronchoscopy in percutaneous Dilational tracheostomy. JAMA Otolaryngol Head Neck Surg. 2016;142:143–9.CrossRef Gadkaree SK, Schwartz D, Gerold K, Kim Y. Use of bronchoscopy in percutaneous Dilational tracheostomy. JAMA Otolaryngol Head Neck Surg. 2016;142:143–9.CrossRef
7.
go back to reference Grensemann J, Eichler L, Kähler S, Jarczak D, Simon M, Pinnschmidt HO, et al. Bronchoscopy versus an endotracheal tube mounted camera for the peri-interventional visualization of percutaneous dilatational tracheostomy - a prospective, randomized trial (VivaPDT). Crit Care. 2017;21:330.CrossRef Grensemann J, Eichler L, Kähler S, Jarczak D, Simon M, Pinnschmidt HO, et al. Bronchoscopy versus an endotracheal tube mounted camera for the peri-interventional visualization of percutaneous dilatational tracheostomy - a prospective, randomized trial (VivaPDT). Crit Care. 2017;21:330.CrossRef
8.
go back to reference Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, et al. Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med. 2008;36:1230–8.CrossRef Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, et al. Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med. 2008;36:1230–8.CrossRef
9.
go back to reference Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35:1132–7.CrossRef Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35:1132–7.CrossRef
10.
go back to reference Reinius H, Borges JB, Fredén F, Jideus L, Camargo ED, Amato MB, et al. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–68.CrossRef Reinius H, Borges JB, Fredén F, Jideus L, Camargo ED, Amato MB, et al. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–68.CrossRef
11.
go back to reference Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury*. Crit Care Med. 2012;40:903–11.CrossRef Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury*. Crit Care Med. 2012;40:903–11.CrossRef
12.
go back to reference Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93.CrossRef Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93.CrossRef
13.
go back to reference Wrigge H, Zinserling J, Muders T, Varelmann D, Günther U, von der Groeben C, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36:903–9.CrossRef Wrigge H, Zinserling J, Muders T, Varelmann D, Günther U, von der Groeben C, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36:903–9.CrossRef
Metadata
Title
Evaluation of regional ventilation by electric impedance tomography during percutaneous dilatational tracheostomy in neurocritical care: a pilot study
Authors
Vera Spatenkova
Eckhard Teschner
Jaroslav Jedlicka
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Care
Tracheostomy
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01948-1

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue