Skip to main content
Top
Published in: Trials 1/2022

Open Access 01-12-2022 | Care | Research

Comparison of explanatory and pragmatic design choices in a cluster-randomized hypertension trial: effects on enrollment, participant characteristics, and adherence

Authors: Karen L. Margolis, A. Lauren Crain, Beverly B. Green, Patrick J. O’Connor, Leif I. Solberg, MarySue Beran, Anna R. Bergdall, Pamala A. Pawloski, Jeanette Y. Ziegenfuss, Meghan M. JaKa, Deepika Appana, Rashmi Sharma, Amy J. Kodet, Nicole K. Trower, Daniel J. Rehrauer, Zeke McKinney, Christine K. Norton, Patricia Haugen, Jeffrey P. Anderson, Benjamin F. Crabtree, Sarah K. Norman, JoAnn M. Sperl-Hillen

Published in: Trials | Issue 1/2022

Login to get access

Abstract

Background

Explanatory trials are designed to assess intervention efficacy under ideal conditions, while pragmatic trials are designed to assess whether research-proven interventions are effective in “real-world” settings without substantial research support.

Methods

We compared two trials (Hyperlink 1 and 3) that tested a pharmacist-led telehealth intervention in adults with uncontrolled hypertension. We applied PRagmatic Explanatory Continuum Indicator Summary-2 (PRECIS-2) scores to describe differences in the way these studies were designed and enrolled study-eligible participants, and the effect of these differences on participant characteristics and adherence to study interventions.

Results

PRECIS-2 scores demonstrated that Hyperlink 1 was more explanatory and Hyperlink 3 more pragmatic. Recruitment for Hyperlink 1 was conducted by study staff, and 2.9% of potentially eligible patients enrolled. Enrollees were older, and more likely to be male and White than non-enrollees. Study staff scheduled the initial pharmacist visit and adherence to attending this visit was 98%. Conversely for Hyperlink 3, recruitment was conducted by clinic staff at routine encounters and 81% of eligible patients enrolled. Enrollees were younger, and less likely to be male and White than non-enrollees. Study staff did not assist with scheduling the initial pharmacist visit and adherence to attending this visit was only 27%. Compared to Hyperlink 1, patients in Hyperlink 3 were more likely to be female, and Asian or Black, had lower socioeconomic indicators, and were more likely to have comorbidities. Owing to a lower BP for eligibility in Hyperlink 1 (>140/90 mm Hg) than in Hyperlink 3 (>150/95 mm Hg), mean baseline BP was 148/85 mm Hg in Hyperlink 1 and 158/92 mm Hg in Hyperlink 3.

Conclusion

The pragmatic design features of Hyperlink 3 substantially increased enrollment of study-eligible patients and of those traditionally under-represented in clinical trials (women, minorities, and patients with less education and lower income), and demonstrated that identification and enrollment of a high proportion of study-eligible subjects could be done by usual primary care clinic staff. However, the trade-off was much lower adherence to the telehealth intervention than in Hyperlink 1, which is likely to reflect uptake under real-word conditions and substantially dilute intervention effect on BP.

Trial registration

The Hyperlink 1 study (NCT00781365) and the Hyperlink 3 study (NCT02996565) are registered at ClinicalTrials.gov.
Literature
1.
go back to reference Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147.CrossRef Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147.CrossRef
2.
go back to reference Walsh JM, McDonald KM, Shojania KG, Sundaram V, Nayak S, Lewis R, et al. Quality improvement strategies for hypertension management: a systematic review. Med Care. 2006;44(7):646–57.CrossRef Walsh JM, McDonald KM, Shojania KG, Sundaram V, Nayak S, Lewis R, et al. Quality improvement strategies for hypertension management: a systematic review. Med Care. 2006;44(7):646–57.CrossRef
3.
go back to reference Glynn LG, Murphy AW, Smith SM, Schroeder K, Fahey T. Interventions used to improve control of blood pressure in patients with hypertension. Cochrane Database Syst Rev. 2010;3:CD005182. Glynn LG, Murphy AW, Smith SM, Schroeder K, Fahey T. Interventions used to improve control of blood pressure in patients with hypertension. Cochrane Database Syst Rev. 2010;3:CD005182.
4.
go back to reference Carter BL, Rogers M, Daly J, Zheng S, James PA. The potency of team-based care interventions for hypertension: a meta-analysis. Arch Intern Med. 2009;169(19):1748–55.CrossRef Carter BL, Rogers M, Daly J, Zheng S, James PA. The potency of team-based care interventions for hypertension: a meta-analysis. Arch Intern Med. 2009;169(19):1748–55.CrossRef
5.
go back to reference Carter BL, Bosworth HB, Green BB. The hypertension team: the role of the pharmacist, nurse, and teamwork in hypertension therapy. J Clin Hypertens. 2012;14(1):51–65.CrossRef Carter BL, Bosworth HB, Green BB. The hypertension team: the role of the pharmacist, nurse, and teamwork in hypertension therapy. J Clin Hypertens. 2012;14(1):51–65.CrossRef
6.
go back to reference Dehmer SP, Baker-Goering MM, Maciosek MV, Hong Y, Kottke TE, Margolis KL, et al. Modeled health and economic impact of team-based care for hypertension. Am J Prev Med. 2016;50(5 Suppl 1):S34–44.CrossRef Dehmer SP, Baker-Goering MM, Maciosek MV, Hong Y, Kottke TE, Margolis KL, et al. Modeled health and economic impact of team-based care for hypertension. Am J Prev Med. 2016;50(5 Suppl 1):S34–44.CrossRef
7.
go back to reference Community Preventive Services Task Force. Team-based care to improve blood pressure control: recommendation of the Community Preventive Services Task Force. Am J Prev Med. 2014;47(1):100–2.CrossRef Community Preventive Services Task Force. Team-based care to improve blood pressure control: recommendation of the Community Preventive Services Task Force. Am J Prev Med. 2014;47(1):100–2.CrossRef
8.
go back to reference Proia KK, Thota AB, Njie GJ, Finnie RK, Hopkins DP, Mukhtar Q, et al. Community Preventive Services Task F. Team-based care and improved blood pressure control: a community guide systematic review. Am J Prev Med. 2014;47(1):86–99.CrossRef Proia KK, Thota AB, Njie GJ, Finnie RK, Hopkins DP, Mukhtar Q, et al. Community Preventive Services Task F. Team-based care and improved blood pressure control: a community guide systematic review. Am J Prev Med. 2014;47(1):86–99.CrossRef
9.
go back to reference Cappuccio FP, Kerry SM, Forbes L, Donald A. Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ. 2004;329(7458):145.CrossRef Cappuccio FP, Kerry SM, Forbes L, Donald A. Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ. 2004;329(7458):145.CrossRef
10.
go back to reference Bray EP, Holder R, Mant J, McManus RJ. Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials. Ann Med. 2010;42(5):371–86.CrossRef Bray EP, Holder R, Mant J, McManus RJ. Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials. Ann Med. 2010;42(5):371–86.CrossRef
11.
go back to reference Agarwal R, Bills JE, Hecht TJ, Light RP. Role of home blood pressure monitoring in overcoming therapeutic inertia and improving hypertension control: a systematic review and meta-analysis. Hypertension. 2011;57(1):29–38.CrossRef Agarwal R, Bills JE, Hecht TJ, Light RP. Role of home blood pressure monitoring in overcoming therapeutic inertia and improving hypertension control: a systematic review and meta-analysis. Hypertension. 2011;57(1):29–38.CrossRef
12.
go back to reference Fletcher BR, Hartmann-Boyce J, Hinton L, McManus RJ. The effect of self-monitoring of blood pressure on medication adherence and lifestyle factors: a systematic review and meta-analysis. Am J Hypertens. 2015;28(10):1209–21.CrossRef Fletcher BR, Hartmann-Boyce J, Hinton L, McManus RJ. The effect of self-monitoring of blood pressure on medication adherence and lifestyle factors: a systematic review and meta-analysis. Am J Hypertens. 2015;28(10):1209–21.CrossRef
13.
go back to reference Uhlig K, Patel K, Ip S, Kitsios GD, Balk EM. Self-measured blood pressure monitoring in the management of hypertension: a systematic review and meta-analysis. Ann Intern Med. 2013;159(3):185–94.CrossRef Uhlig K, Patel K, Ip S, Kitsios GD, Balk EM. Self-measured blood pressure monitoring in the management of hypertension: a systematic review and meta-analysis. Ann Intern Med. 2013;159(3):185–94.CrossRef
14.
go back to reference Tucker KL, Sheppard JP, Stevens R, Bosworth HB, Bove A, Bray EP, et al. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis. PLoS Med. 2017;14(9):e1002389.CrossRef Tucker KL, Sheppard JP, Stevens R, Bosworth HB, Bove A, Bray EP, et al. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis. PLoS Med. 2017;14(9):e1002389.CrossRef
15.
go back to reference Margolis KL, Kerby TJ, Asche SE, Bergdall AR, Maciosek MV, O’Connor PJ, et al. Design and rationale for home blood pressure telemonitoring and case management to control hypertension (HyperLink): a cluster randomized trial. Contemp Clin Trials. 2012;33(4):794–803.CrossRef Margolis KL, Kerby TJ, Asche SE, Bergdall AR, Maciosek MV, O’Connor PJ, et al. Design and rationale for home blood pressure telemonitoring and case management to control hypertension (HyperLink): a cluster randomized trial. Contemp Clin Trials. 2012;33(4):794–803.CrossRef
16.
go back to reference Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Groen SE, Kadrmas HM, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310(1):46–56.CrossRef Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Groen SE, Kadrmas HM, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310(1):46–56.CrossRef
17.
go back to reference Margolis KL, Crain AL, Bergdall AR, Beran M, Anderson JP, Solberg LI, et al. Design of a pragmatic cluster-randomized trial comparing telehealth care and best practice clinic-based care for uncontrolled high blood pressure. Contemp Clin Trials. 2020;92:105939.CrossRef Margolis KL, Crain AL, Bergdall AR, Beran M, Anderson JP, Solberg LI, et al. Design of a pragmatic cluster-randomized trial comparing telehealth care and best practice clinic-based care for uncontrolled high blood pressure. Contemp Clin Trials. 2020;92:105939.CrossRef
20.
go back to reference Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRef Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.CrossRef
21.
go back to reference Schwartz G, Kerandi H, Luehr D, O’Connor PJ, Margolis KL, Reddy G, et al. Hypertension diagnosis and treatment (Healthcare guideline). Minneapolis: Institute for Clinical Systems Improvement; 2010. Schwartz G, Kerandi H, Luehr D, O’Connor PJ, Margolis KL, Reddy G, et al. Hypertension diagnosis and treatment (Healthcare guideline). Minneapolis: Institute for Clinical Systems Improvement; 2010.
22.
go back to reference Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324.CrossRef Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324.CrossRef
23.
go back to reference El Assaad MA, Topouchian JA, Darne BM, Asmar RG. Validation of the Omron HEM-907 device for blood pressure measurement. Blood Press Monit. 2002;7(4):237–41.CrossRef El Assaad MA, Topouchian JA, Darne BM, Asmar RG. Validation of the Omron HEM-907 device for blood pressure measurement. Blood Press Monit. 2002;7(4):237–41.CrossRef
24.
go back to reference Beran M, Asche SE, Bergdall AR, Crabtree B, Green BB, Groen SE, et al. Key components of success in a randomized trial of blood pressure telemonitoring with medication therapy management pharmacists. J Am Pharm Assoc (2003). 2018;58(6):614–21.CrossRef Beran M, Asche SE, Bergdall AR, Crabtree B, Green BB, Groen SE, et al. Key components of success in a randomized trial of blood pressure telemonitoring with medication therapy management pharmacists. J Am Pharm Assoc (2003). 2018;58(6):614–21.CrossRef
25.
go back to reference Kerby TJ, Asche SE, Maciosek MV, O’Connor PJ, Sperl-Hillen JM, Margolis KL. Adherence to blood pressure telemonitoring in a cluster-randomized clinical trial. J Clin Hypertens (Greenwich). 2012;14(10):668–74.CrossRef Kerby TJ, Asche SE, Maciosek MV, O’Connor PJ, Sperl-Hillen JM, Margolis KL. Adherence to blood pressure telemonitoring in a cluster-randomized clinical trial. J Clin Hypertens (Greenwich). 2012;14(10):668–74.CrossRef
26.
go back to reference Johnson KE, Neta G, Dember LM, Coronado GD, Suls J, Chambers DA, et al. Use of PRECIS ratings in the National Institutes of Health (NIH) Health Care Systems Research Collaboratory. Trials. 2016;17:32.CrossRef Johnson KE, Neta G, Dember LM, Coronado GD, Suls J, Chambers DA, et al. Use of PRECIS ratings in the National Institutes of Health (NIH) Health Care Systems Research Collaboratory. Trials. 2016;17:32.CrossRef
27.
go back to reference Glasgow RE, Gaglio B, Bennett G, Jerome GJ, Yeh HC, Sarwer DB, et al. Applying the PRECIS criteria to describe three effectiveness trials of weight loss in obese patients with comorbid conditions. Health Serv Res. 2012;47(3 Pt 1):1051–67.CrossRef Glasgow RE, Gaglio B, Bennett G, Jerome GJ, Yeh HC, Sarwer DB, et al. Applying the PRECIS criteria to describe three effectiveness trials of weight loss in obese patients with comorbid conditions. Health Serv Res. 2012;47(3 Pt 1):1051–67.CrossRef
28.
go back to reference Dember LM, Lacson E Jr, Brunelli SM, Hsu JY, Cheung AK, Daugirdas JT, et al. The TiME Trial: a fully embedded, cluster-randomized, pragmatic trial of hemodialysis session duration. J Am Soc Nephrol. 2019;30(5):890–903.CrossRef Dember LM, Lacson E Jr, Brunelli SM, Hsu JY, Cheung AK, Daugirdas JT, et al. The TiME Trial: a fully embedded, cluster-randomized, pragmatic trial of hemodialysis session duration. J Am Soc Nephrol. 2019;30(5):890–903.CrossRef
29.
go back to reference Green BB, Vollmer WM, Keast E, Petrik AF, Coronado GD. Challenges in assessing population reach in a pragmatic trial. Prev Med Rep. 2019;15:100910.CrossRef Green BB, Vollmer WM, Keast E, Petrik AF, Coronado GD. Challenges in assessing population reach in a pragmatic trial. Prev Med Rep. 2019;15:100910.CrossRef
30.
go back to reference Mitchell SL, Volandes AE, Gutman R, Gozalo PL, Ogarek JA, Loomer L, et al. Advance care planning video intervention among long-stay nursing home residents: a pragmatic cluster randomized clinical trial. JAMA Intern Med. 2020;180(8):1070–8.CrossRef Mitchell SL, Volandes AE, Gutman R, Gozalo PL, Ogarek JA, Loomer L, et al. Advance care planning video intervention among long-stay nursing home residents: a pragmatic cluster randomized clinical trial. JAMA Intern Med. 2020;180(8):1070–8.CrossRef
31.
go back to reference Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Maciosek MV, Nyboer RA, et al. A successful multifaceted trial to improve hypertension control in primary care: why did it work? J Gen Intern Med. 2015;30(11):1665–72.CrossRef Margolis KL, Asche SE, Bergdall AR, Dehmer SP, Maciosek MV, Nyboer RA, et al. A successful multifaceted trial to improve hypertension control in primary care: why did it work? J Gen Intern Med. 2015;30(11):1665–72.CrossRef
32.
go back to reference Hernan MA, Robins JM. Per-protocol analyses of pragmatic trials. N Engl J Med. 2017;377(14):1391–8.CrossRef Hernan MA, Robins JM. Per-protocol analyses of pragmatic trials. N Engl J Med. 2017;377(14):1391–8.CrossRef
Metadata
Title
Comparison of explanatory and pragmatic design choices in a cluster-randomized hypertension trial: effects on enrollment, participant characteristics, and adherence
Authors
Karen L. Margolis
A. Lauren Crain
Beverly B. Green
Patrick J. O’Connor
Leif I. Solberg
MarySue Beran
Anna R. Bergdall
Pamala A. Pawloski
Jeanette Y. Ziegenfuss
Meghan M. JaKa
Deepika Appana
Rashmi Sharma
Amy J. Kodet
Nicole K. Trower
Daniel J. Rehrauer
Zeke McKinney
Christine K. Norton
Patricia Haugen
Jeffrey P. Anderson
Benjamin F. Crabtree
Sarah K. Norman
JoAnn M. Sperl-Hillen
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Trials / Issue 1/2022
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-022-06611-3

Other articles of this Issue 1/2022

Trials 1/2022 Go to the issue