Skip to main content
Top
Published in: Diabetes Therapy 2/2016

Open Access 01-06-2016 | Review

Cardiovascular Outcome Studies in Diabetes: How Do We Make Sense of These New Data?

Authors: W. David Strain, Christine Smith

Published in: Diabetes Therapy | Issue 2/2016

Login to get access

Abstract

Poorly controlled diabetes is characterized by premature cardiovascular mortality and morbidity. The mechanisms linking hyperglycemia with accelerated atherosclerotic disease have not been fully elucidated; however, are thought to be mediated through vascular inflammation, oxidative stress and endothelial dysfunction. The advent of incretin-based therapy, whether by increasing endogenous glucagon-like peptide (GLP)-1 and glucose-dependent inhibitory polypeptide by inhibition of their breakdown using di-peptidyl peptidase 4 inhibitors, or augmenting GLP-1 activity using either exendin-4-based drugs or synthetic GLP-1 analogs promised not just improvements in glycemic control, but improvements in endothelial function, lipid profiles and markers of vascular inflammation. As such, it was anticipated they would demonstrate cardiovascular benefit in those with diabetes, indeed early meta-analyses suggested cardiovascular events would be reduced. To date, however, this benefit has failed to materialize, indeed the cardiovascular outcome trials, whilst meeting their primary endpoint of cardiovascular safety, have failed to demonstrate any improvements in stroke or myocardial infarction. This review will explore the data and attempt to answer the question: what went wrong?
Literature
1.
go back to reference International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels: International Diabetes Federation; 2015. International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels: International Diabetes Federation; 2015.
2.
go back to reference American Diabetes A. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36:1033–46.CrossRef American Diabetes A. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36:1033–46.CrossRef
3.
go back to reference Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.CrossRef Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.CrossRef
4.
go back to reference Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the american heart association and the american diabetes association. Circulation. 2007;115:114–26.CrossRefPubMed Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the american heart association and the american diabetes association. Circulation. 2007;115:114–26.CrossRefPubMed
5.
go back to reference Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (ukpds 35): prospective observational study. BMJ. 2000;321:405–12.CrossRefPubMedPubMedCentral Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (ukpds 35): prospective observational study. BMJ. 2000;321:405–12.CrossRefPubMedPubMedCentral
6.
go back to reference Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRefPubMed Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRefPubMed
7.
go back to reference Zoungas S, Chalmers J, Neal B, Billot L, Li Q, Hirakawa Y, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371:1392–406.CrossRefPubMed Zoungas S, Chalmers J, Neal B, Billot L, Li Q, Hirakawa Y, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371:1392–406.CrossRefPubMed
8.
go back to reference Dluhy RG, McMahon GT. Intensive glycemic control in the accord and advance trials. N Engl J Med. 2008;358:2630–3.CrossRefPubMed Dluhy RG, McMahon GT. Intensive glycemic control in the accord and advance trials. N Engl J Med. 2008;358:2630–3.CrossRefPubMed
9.
go back to reference UKPDS 33. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (ukpds 33). Uk prospective diabetes study (ukpds) group. Lancet. 1998;352:837.CrossRef UKPDS 33. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (ukpds 33). Uk prospective diabetes study (ukpds) group. Lancet. 1998;352:837.CrossRef
10.
go back to reference Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP, Cutler JA, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the accord study. BMJ. 2010;340:b4909.CrossRefPubMedPubMedCentral Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP, Cutler JA, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the accord study. BMJ. 2010;340:b4909.CrossRefPubMedPubMedCentral
11.
go back to reference Forst T, Hanefeld M, Jacob S, Moeser G, Schwenk G, Pfutzner A, et al. Association of sulphonylurea treatment with all-cause and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Diabetes Vasc Dis Res. 2013;10:302–14.CrossRef Forst T, Hanefeld M, Jacob S, Moeser G, Schwenk G, Pfutzner A, et al. Association of sulphonylurea treatment with all-cause and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Diabetes Vasc Dis Res. 2013;10:302–14.CrossRef
12.
go back to reference Defronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.CrossRefPubMedPubMedCentral Defronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.CrossRefPubMedPubMedCentral
13.
go back to reference la Barre J, Still E. Studies on the physiology of secretin. Am J Physiol. 1930;91:649–53. la Barre J, Still E. Studies on the physiology of secretin. Am J Physiol. 1930;91:649–53.
14.
go back to reference Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297:127–36.CrossRefPubMed Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297:127–36.CrossRefPubMed
15.
go back to reference Erdogdu O, Nathanson D, Sjoholm A, Nystrom T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through enos-, pka- and pi3k/akt-dependent pathways and requires glp-1 receptor. Mol Cell Endocrinol. 2010;325:26–35.CrossRefPubMed Erdogdu O, Nathanson D, Sjoholm A, Nystrom T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through enos-, pka- and pi3k/akt-dependent pathways and requires glp-1 receptor. Mol Cell Endocrinol. 2010;325:26–35.CrossRefPubMed
16.
go back to reference Ding L, Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin. 2012;33:75–81.CrossRefPubMed Ding L, Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin. 2012;33:75–81.CrossRefPubMed
17.
go back to reference Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, et al. The glucagon-like peptide 1 analog liraglutide reduces tnf-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis. 2012;221:375–82.CrossRefPubMed Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, et al. The glucagon-like peptide 1 analog liraglutide reduces tnf-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis. 2012;221:375–82.CrossRefPubMed
18.
go back to reference Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201:59–66.CrossRefPubMed Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201:59–66.CrossRefPubMed
19.
go back to reference Schisano B, Harte AL, Lois K, Saravanan P, Al-Daghri N, Al-Attas O, et al. Glp-1 analogue, liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul Pept. 2012;174:46–52.CrossRefPubMed Schisano B, Harte AL, Lois K, Saravanan P, Al-Daghri N, Al-Attas O, et al. Glp-1 analogue, liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul Pept. 2012;174:46–52.CrossRefPubMed
20.
go back to reference Nathanson D, Erdogdu O, Pernow J, Zhang Q, Nystrom T. Endothelial dysfunction induced by triglycerides is not restored by exenatide in rat conduit arteries ex vivo. Regul Pept. 2009;157:8–13.CrossRefPubMed Nathanson D, Erdogdu O, Pernow J, Zhang Q, Nystrom T. Endothelial dysfunction induced by triglycerides is not restored by exenatide in rat conduit arteries ex vivo. Regul Pept. 2009;157:8–13.CrossRefPubMed
21.
go back to reference Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO. Vasorelaxant effect of glucagon-like peptide (7-36) amide and amylin on the pulmonary circulation in the rat. Regul Pept. 2001;102:81–6.CrossRefPubMed Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO. Vasorelaxant effect of glucagon-like peptide (7-36) amide and amylin on the pulmonary circulation in the rat. Regul Pept. 2001;102:81–6.CrossRefPubMed
22.
go back to reference Richter G, Feddersen O, Wagner U, Barth P, Goke R, Goke B. Glp-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 1993;265:L374–81. Richter G, Feddersen O, Wagner U, Barth P, Goke R, Goke B. Glp-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 1993;265:L374–81.
23.
go back to reference Ban K, Noyan-Ashraf H, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and independent pathways. Circulation. 2008;117:2340–50.CrossRefPubMed Ban K, Noyan-Ashraf H, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and independent pathways. Circulation. 2008;117:2340–50.CrossRefPubMed
24.
go back to reference Nystrom T, Gonon AT, Sjoholm A, Pernow J. Glucagon-like peptide relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005;125:173–7.CrossRefPubMed Nystrom T, Gonon AT, Sjoholm A, Pernow J. Glucagon-like peptide relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005;125:173–7.CrossRefPubMed
25.
go back to reference Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.CrossRefPubMed Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.CrossRefPubMed
26.
go back to reference Bose AK, Mocanu MM, Carr RD, Yellon DM. Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (glp-1) in the vitro rat heart and may involve the p70s6k pathway. Cardiovasc Drugs Ther. 2007;21:253–6.CrossRefPubMed Bose AK, Mocanu MM, Carr RD, Yellon DM. Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (glp-1) in the vitro rat heart and may involve the p70s6k pathway. Cardiovasc Drugs Ther. 2007;21:253–6.CrossRefPubMed
27.
go back to reference Huisamen B, Gende S, Lochner A. Signalling pathways activated by glucagon-like-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr. 2008;19:77–83.PubMedPubMedCentral Huisamen B, Gende S, Lochner A. Signalling pathways activated by glucagon-like-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr. 2008;19:77–83.PubMedPubMedCentral
28.
go back to reference Sonne DP, Engstrom T, Treiman M. Protective effects of glp-1 analogues exendin-4 and glp-1(9-36) amide against ischaemia-reperfusion injury in rat heart. Regul Pept. 2008;146:243–9.CrossRefPubMed Sonne DP, Engstrom T, Treiman M. Protective effects of glp-1 analogues exendin-4 and glp-1(9-36) amide against ischaemia-reperfusion injury in rat heart. Regul Pept. 2008;146:243–9.CrossRefPubMed
29.
go back to reference Yu M, Moreno C, Hoaglund KM, Dahly A, Ditter K, Mistry M, et al. Antihypertensive effects of glucagon-like peptide-1 in dahl salt-sensitive rats. J Hypertens. 2003;21:1125–35.CrossRefPubMed Yu M, Moreno C, Hoaglund KM, Dahly A, Ditter K, Mistry M, et al. Antihypertensive effects of glucagon-like peptide-1 in dahl salt-sensitive rats. J Hypertens. 2003;21:1125–35.CrossRefPubMed
30.
go back to reference Nystrom T, Guniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:E1209–15.CrossRefPubMed Nystrom T, Guniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:E1209–15.CrossRefPubMed
31.
go back to reference Basu A, Charkoudian N, Schrage WG, Rizza RA, Basu R, Joyner MJ. Beneficial effects of glp-1 on endothelial function in humans: dampening by glyburide but not glimepiride. Am J Physiol Endocrinol Metab. 2007;293:E1289–95.CrossRefPubMed Basu A, Charkoudian N, Schrage WG, Rizza RA, Basu R, Joyner MJ. Beneficial effects of glp-1 on endothelial function in humans: dampening by glyburide but not glimepiride. Am J Physiol Endocrinol Metab. 2007;293:E1289–95.CrossRefPubMed
32.
go back to reference Nikolaidis LA, Mankad S, Sokos GG, Mikse G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.CrossRefPubMed Nikolaidis LA, Mankad S, Sokos GG, Mikse G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.CrossRefPubMed
33.
go back to reference Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.CrossRefPubMedPubMedCentral Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.CrossRefPubMedPubMedCentral
34.
go back to reference Viswanathan P, Chaudhuri A, Bhatia R, Al-Atrash F, Mohanty P, Dandona P. Exenatide therapy in obese patients with type 2 diabetes mellitus treated with insulin. Endocr Pract. 2007;13:444–50.CrossRefPubMed Viswanathan P, Chaudhuri A, Bhatia R, Al-Atrash F, Mohanty P, Dandona P. Exenatide therapy in obese patients with type 2 diabetes mellitus treated with insulin. Endocr Pract. 2007;13:444–50.CrossRefPubMed
35.
go back to reference Fonseca VA, DeVries J, Bain SC. Liraglutide improves the profile of lipid and cardiovascular risk biomarkers from baseline. In: 21st World Diabetes Congress of the International Diabetes Federation; 2011. Fonseca VA, DeVries J, Bain SC. Liraglutide improves the profile of lipid and cardiovascular risk biomarkers from baseline. In: 21st World Diabetes Congress of the International Diabetes Federation; 2011.
36.
go back to reference Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97:198–207.CrossRefPubMed Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97:198–207.CrossRefPubMed
37.
go back to reference Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A, et al. Sitagliptin exerts an antiinflammatory action. J Clin Endocrinol Metab. 2012;97:3333–41.CrossRefPubMedPubMedCentral Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A, et al. Sitagliptin exerts an antiinflammatory action. J Clin Endocrinol Metab. 2012;97:3333–41.CrossRefPubMedPubMedCentral
38.
go back to reference Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D, Dunning BE, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49:2049–57.CrossRefPubMed Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D, Dunning BE, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49:2049–57.CrossRefPubMed
39.
go back to reference Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein b48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15:1040–8.CrossRefPubMed Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein b48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15:1040–8.CrossRefPubMed
40.
go back to reference Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47.CrossRefPubMed Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47.CrossRefPubMed
41.
go back to reference Monami M, Ahren B, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15:112–20.CrossRefPubMed Monami M, Ahren B, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15:112–20.CrossRefPubMed
42.
go back to reference Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42.CrossRefPubMed Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42.CrossRefPubMed
43.
go back to reference Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.CrossRefPubMed Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.CrossRefPubMed
44.
go back to reference White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35.CrossRefPubMed White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35.CrossRefPubMed
45.
go back to reference Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the savor-timi 53 randomized trial. Circulation. 2014;130:1579–88.CrossRefPubMed Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the savor-timi 53 randomized trial. Circulation. 2014;130:1579–88.CrossRefPubMed
46.
go back to reference Zannad F, Cannon CP, Cushman WC, Bakris GL, Nissen SE, Heller S, et al. Alogliptin in patients with type 2 diabetes after acute coronary syndromes: Heart failure outcomes and cardiovascular safety in heart failure patients. J Am Coll Cardiol. 2014;63:12_S.CrossRef Zannad F, Cannon CP, Cushman WC, Bakris GL, Nissen SE, Heller S, et al. Alogliptin in patients with type 2 diabetes after acute coronary syndromes: Heart failure outcomes and cardiovascular safety in heart failure patients. J Am Coll Cardiol. 2014;63:12_S.CrossRef
48.
go back to reference Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.CrossRefPubMed Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.CrossRefPubMed
49.
go back to reference Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the scandinavian simvastatin survival study (4s). Lancet. 1994;344(8934):1383–89. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the scandinavian simvastatin survival study (4s). Lancet. 1994;344(8934):1383–89.
50.
go back to reference Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (leader) trial. Am Heart J. 2013;166(823–830):e825. Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (leader) trial. Am Heart J. 2013;166(823–830):e825.
51.
go back to reference Marx N, Rosenstock J, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, et al. Design and baseline characteristics of the cardiovascular outcome trial of linagliptin versus glimepiride in type 2 diabetes (carolina(r)). Diabetes Vasc Dis Res. 2015;12:164–74.CrossRef Marx N, Rosenstock J, Kahn SE, Zinman B, Kastelein JJ, Lachin JM, et al. Design and baseline characteristics of the cardiovascular outcome trial of linagliptin versus glimepiride in type 2 diabetes (carolina(r)). Diabetes Vasc Dis Res. 2015;12:164–74.CrossRef
52.
go back to reference Macisaac RJ, Jerums G. Intensive glucose control and cardiovascular outcomes in type 2 diabetes. Heart Lung Circ. 2011;20:647–54.CrossRefPubMed Macisaac RJ, Jerums G. Intensive glucose control and cardiovascular outcomes in type 2 diabetes. Heart Lung Circ. 2011;20:647–54.CrossRefPubMed
53.
go back to reference Ahren B, Burke B. Using albumin to improve the therapeutic properties of diabetes treatments. Diabetes Obes Metab. 2012;14(2):121–9.CrossRefPubMed Ahren B, Burke B. Using albumin to improve the therapeutic properties of diabetes treatments. Diabetes Obes Metab. 2012;14(2):121–9.CrossRefPubMed
54.
go back to reference Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622–8.CrossRefPubMed Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622–8.CrossRefPubMed
55.
go back to reference Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, et al. Gene silencing of the mitochondrial adaptor p66(shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111:278–89.CrossRefPubMed Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, et al. Gene silencing of the mitochondrial adaptor p66(shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res. 2012;111:278–89.CrossRefPubMed
56.
go back to reference El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17.CrossRefPubMedPubMedCentral El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409–17.CrossRefPubMedPubMedCentral
57.
go back to reference Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, et al. Repression of p66shc expression by sirt1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109:639–48.CrossRefPubMed Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, et al. Repression of p66shc expression by sirt1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011;109:639–48.CrossRefPubMed
58.
go back to reference Kim CS, Jung SB, Naqvi A, Hoffman TA, DeRicco J, Yamamori T, et al. P53 impairs endothelium-dependent vasomotor function through transcriptional upregulation of p66shc. Circ Res. 2008;103:1441–50.CrossRefPubMed Kim CS, Jung SB, Naqvi A, Hoffman TA, DeRicco J, Yamamori T, et al. P53 impairs endothelium-dependent vasomotor function through transcriptional upregulation of p66shc. Circ Res. 2008;103:1441–50.CrossRefPubMed
59.
go back to reference Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the lkb1/ampk/ros pathway and therapeutic effects of metformin. Diabetes. 2012;61:217–28.CrossRefPubMed Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the lkb1/ampk/ros pathway and therapeutic effects of metformin. Diabetes. 2012;61:217–28.CrossRefPubMed
60.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef
61.
go back to reference Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003;88:531–7.CrossRefPubMed Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003;88:531–7.CrossRefPubMed
Metadata
Title
Cardiovascular Outcome Studies in Diabetes: How Do We Make Sense of These New Data?
Authors
W. David Strain
Christine Smith
Publication date
01-06-2016
Publisher
Springer Healthcare
Published in
Diabetes Therapy / Issue 2/2016
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-016-0165-z

Other articles of this Issue 2/2016

Diabetes Therapy 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.