Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 2/2024

07-01-2023 | Cardiopulmonary Resuscitation | Original Article

Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice

Authors: Feng Ju, Geoffrey W. Abbott, Jiaxue Li, Qifeng Wang, Ting Liu, Quanhua Liu, Zhaoyang Hu

Published in: Cardiovascular Drugs and Therapy | Issue 2/2024

Login to get access

Abstract

Objective

The SGLT2 inhibitor, canagliflozin, not only reduces glycemia in patients with type 2 diabetes but also exerts cardioprotective effects in individuals without diabetes. However, its potential beneficial effects in cardiac arrest have not been characterized. The purpose of this study was to examine the protective effect of canagliflozin pretreatment on postresuscitation-induced cardiac dysfunction in vivo.

Methods

Male C57/BL6 mice were randomized to vehicle (sham and control) or canagliflozin treatment groups. All mice except for the sham-operated mice were subjected to potassium chloride-induced cardiac arrest followed by chest compressions and intravenous epinephrine for resuscitation. Canagliflozin therapy efficacies were evaluated by electrocardiogram, echocardiography, histological analysis, inflammatory response, serum markers of myocardial injury, protein phosphorylation analysis, and immunohistological assessment.

Results

Canagliflozin-pretreated mice exhibited a higher survival rate (P < 0.05), a shorter return of spontaneous circulation (ROSC) time (P < 0.01) and a higher neurological score (P < 0.01 or P < 0.001) than control mice after resuscitation. Canagliflozin was effective at improving cardiac arrest and resuscitation-associated cardiac dysfunction, indicated by increased left ventricular ejection fraction and fractional shortening (P < 0.001). Canagliflozin reduced serum levels of LDH, CK-MB and α-HBDH, ameliorated systemic inflammatory response, and diminished the incidence of early resuscitation-induced arrhythmia. Notably, canagliflozin promoted phosphorylation of cardiac STAT-3 postresuscitation. Furthermore, pharmacological inhibition of STAT-3 by Ag490 blunted STAT-3 phosphorylation and abolished the cardioprotective actions of canagliflozin.

Conclusions

Canagliflozin offered a strong cardioprotective effect against cardiac arrest and resuscitation-induced cardiac dysfunction. This canagliflozin-induced cardioprotection is mediated by the STAT-3-dependent cell-survival signaling pathway.
Appendix
Available only for authorised users
Literature
2.
go back to reference Huet O, Dupic L, Batteux F, et al. Postresuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit Care Med. 2011;39(7):1712–20.PubMedCrossRef Huet O, Dupic L, Batteux F, et al. Postresuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit Care Med. 2011;39(7):1712–20.PubMedCrossRef
3.
go back to reference Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965.PubMedPubMedCentralCrossRef Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 Inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965.PubMedPubMedCentralCrossRef
4.
go back to reference Inzucchi SE, Kosiborod M, Fitchett D, et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation. 2018;138(17):1904–7.PubMedCrossRef Inzucchi SE, Kosiborod M, Fitchett D, et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation. 2018;138(17):1904–7.PubMedCrossRef
5.
go back to reference Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRef Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRef
6.
go back to reference Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.PubMedCrossRef Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.PubMedCrossRef
7.
go back to reference Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.PubMedCrossRef Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.PubMedCrossRef
8.
go back to reference McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMedCrossRef McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.PubMedCrossRef
9.
go back to reference Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–67.PubMedCrossRef Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–67.PubMedCrossRef
10.
go back to reference von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute Myocardial Infarction: the EMMY trial. Eur Heart J. 2022;43(41):4421–32.CrossRef von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute Myocardial Infarction: the EMMY trial. Eur Heart J. 2022;43(41):4421–32.CrossRef
11.
go back to reference Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G. STAT3 as a common signal of ischemic conditioning: a lesson on "rigor and reproducibility" in preclinical studies on cardioprotection. Basic Res Cardiol. 2018;113(1):3.PubMedCrossRef Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G. STAT3 as a common signal of ischemic conditioning: a lesson on "rigor and reproducibility" in preclinical studies on cardioprotection. Basic Res Cardiol. 2018;113(1):3.PubMedCrossRef
12.
go back to reference Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109(11):1302–8.PubMedCrossRef Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109(11):1302–8.PubMedCrossRef
13.
go back to reference Luo N, Liu J, Chen Y, Li H, Hu Z, Abbott GW. Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PLoS One. 2018;13(5):e0196186.PubMedPubMedCentralCrossRef Luo N, Liu J, Chen Y, Li H, Hu Z, Abbott GW. Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PLoS One. 2018;13(5):e0196186.PubMedPubMedCentralCrossRef
14.
go back to reference Boengler K, Buechert A, Heinen Y, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008;102(1):131–5.PubMedCrossRef Boengler K, Buechert A, Heinen Y, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008;102(1):131–5.PubMedCrossRef
15.
go back to reference Kabil SL, Mahmoud NM. Canagliflozin protects against non-alcoholic steatohepatitis in type-2 diabetic rats through zinc alpha-2 glycoprotein up-regulation. Eur J Pharmacol. 2018;828:135–45.PubMedCrossRef Kabil SL, Mahmoud NM. Canagliflozin protects against non-alcoholic steatohepatitis in type-2 diabetic rats through zinc alpha-2 glycoprotein up-regulation. Eur J Pharmacol. 2018;828:135–45.PubMedCrossRef
16.
go back to reference Abella BS, Zhao D, Alvarado J, Hamann K, Vanden Hoek TL, Becker LB. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109(22):2786–91.PubMedCrossRef Abella BS, Zhao D, Alvarado J, Hamann K, Vanden Hoek TL, Becker LB. Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation. 2004;109(22):2786–91.PubMedCrossRef
17.
go back to reference Hu Z, Kant R, Anand M, et al. Kcne2 deletion creates a multisystem syndrome predisposing to sudden cardiac death. Circ Cardiovasc Genet. 2014;7(1):33–42.PubMedPubMedCentralCrossRef Hu Z, Kant R, Anand M, et al. Kcne2 deletion creates a multisystem syndrome predisposing to sudden cardiac death. Circ Cardiovasc Genet. 2014;7(1):33–42.PubMedPubMedCentralCrossRef
18.
go back to reference Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol. 2021;20(1):199.PubMedPubMedCentralCrossRef Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol. 2021;20(1):199.PubMedPubMedCentralCrossRef
19.
go back to reference Salcido DD, Schmicker RH, Kime N, et al. Effects of intra-resuscitation antiarrhythmic administration on rearrest occurrence and intra-resuscitation ECG characteristics in the ROC ALPS trial. Resuscitation. 2018;129:6–12.PubMedPubMedCentralCrossRef Salcido DD, Schmicker RH, Kime N, et al. Effects of intra-resuscitation antiarrhythmic administration on rearrest occurrence and intra-resuscitation ECG characteristics in the ROC ALPS trial. Resuscitation. 2018;129:6–12.PubMedPubMedCentralCrossRef
20.
go back to reference Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79.PubMedCrossRef Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79.PubMedCrossRef
21.
22.
go back to reference Myerburg RJ. Sudden cardiac death: exploring the limits of our knowledge. J Cardiovasc Electrophysiol. 2001;12(3):369–81.PubMedCrossRef Myerburg RJ. Sudden cardiac death: exploring the limits of our knowledge. J Cardiovasc Electrophysiol. 2001;12(3):369–81.PubMedCrossRef
23.
go back to reference Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.PubMedCrossRef Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.PubMedCrossRef
24.
go back to reference Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.PubMedCrossRef Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8.PubMedCrossRef
25.
go back to reference Kilgannon JH, Roberts BW, Reihl LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6.PubMedPubMedCentralCrossRef Kilgannon JH, Roberts BW, Reihl LR, et al. Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality. Resuscitation. 2008;79(3):410–6.PubMedPubMedCentralCrossRef
26.
go back to reference Negovsky VA. The second step in resuscitation--the treatment of the 'post-resuscitation disease'. Resuscitation. 1972;1(1):1–7.PubMedCrossRef Negovsky VA. The second step in resuscitation--the treatment of the 'post-resuscitation disease'. Resuscitation. 1972;1(1):1–7.PubMedCrossRef
27.
go back to reference Ruiz-Bailen M, Aguayo de Hoyos E, Ruiz-Navarro S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66(2):175–81.PubMedCrossRef Ruiz-Bailen M, Aguayo de Hoyos E, Ruiz-Navarro S, et al. Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005;66(2):175–81.PubMedCrossRef
28.
go back to reference Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):2110–6.PubMedCrossRef Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40(12):2110–6.PubMedCrossRef
29.
go back to reference Vognsen M, Fabian-Jessing BK, Secher N, et al. Contemporary animal models of cardiac arrest: a systematic review. Resuscitation. 2017;113:115–23.PubMedCrossRef Vognsen M, Fabian-Jessing BK, Secher N, et al. Contemporary animal models of cardiac arrest: a systematic review. Resuscitation. 2017;113:115–23.PubMedCrossRef
30.
go back to reference Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation. 1983;68:I25–36.PubMed Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation. 1983;68:I25–36.PubMed
31.
go back to reference Song F, Shan Y, Cappello F, et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Crit Care Med. 2010;38(5):1329–34.PubMedCrossRef Song F, Shan Y, Cappello F, et al. Apoptosis is not involved in the mechanism of myocardial dysfunction after resuscitation in a rat model of cardiac arrest and cardiopulmonary resuscitation. Crit Care Med. 2010;38(5):1329–34.PubMedCrossRef
32.
go back to reference Nishida T, Yu JD, Minamishima S, et al. Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med. 2009;37(1):256–62.PubMedPubMedCentralCrossRef Nishida T, Yu JD, Minamishima S, et al. Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med. 2009;37(1):256–62.PubMedPubMedCentralCrossRef
33.
go back to reference Bro-Jeppesen J, Kjaergaard J, Stammet P, et al. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 degrees C or 36 degrees C. Resuscitation. 2016;98:1–8.PubMedCrossRef Bro-Jeppesen J, Kjaergaard J, Stammet P, et al. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 degrees C or 36 degrees C. Resuscitation. 2016;98:1–8.PubMedCrossRef
34.
go back to reference Meng ZH, Dyer K, Billiar TR, Tweardy DJ. Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am J Phys Cell Phys. 2001;280(2):C343–51. Meng ZH, Dyer K, Billiar TR, Tweardy DJ. Essential role for IL-6 in postresuscitation inflammation in hemorrhagic shock. Am J Phys Cell Phys. 2001;280(2):C343–51.
35.
go back to reference Niemann JT, Youngquist ST, Shah AP, Thomas JL, Rosborough JP. TNF-alpha blockade improves early post-resuscitation survival and hemodynamics in a swine model of ischemic ventricular fibrillation. Resuscitation. 2013;84(1):103–7.PubMedCrossRef Niemann JT, Youngquist ST, Shah AP, Thomas JL, Rosborough JP. TNF-alpha blockade improves early post-resuscitation survival and hemodynamics in a swine model of ischemic ventricular fibrillation. Resuscitation. 2013;84(1):103–7.PubMedCrossRef
36.
go back to reference Meyer MAS, Wiberg S, Grand J, et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (the IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized clinical trial. Circulation. 2021;143(19):1841–51.PubMedPubMedCentralCrossRef Meyer MAS, Wiberg S, Grand J, et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (the IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized clinical trial. Circulation. 2021;143(19):1841–51.PubMedPubMedCentralCrossRef
37.
go back to reference Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.PubMedCrossRef Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66:255–70.PubMedCrossRef
38.
go back to reference Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRef Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRef
39.
go back to reference Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMedCrossRef Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.PubMedCrossRef
40.
go back to reference Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13.PubMedPubMedCentralCrossRef Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13.PubMedPubMedCentralCrossRef
41.
go back to reference Nikolaou PE, Mylonas N, Makridakis M, et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol. 2022;117(1):27.PubMedCrossRef Nikolaou PE, Mylonas N, Makridakis M, et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol. 2022;117(1):27.PubMedCrossRef
42.
go back to reference Ye Y, Jia X, Bajaj M, Birnbaum Y. Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32(6):553–8.PubMedCrossRef Ye Y, Jia X, Bajaj M, Birnbaum Y. Dapagliflozin attenuates Na(+)/H(+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32(6):553–8.PubMedCrossRef
43.
go back to reference Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.PubMedCrossRef Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.PubMedCrossRef
44.
go back to reference Sayour AA, Korkmaz-Icoz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med. 2019;17(1):127.PubMedPubMedCentralCrossRef Sayour AA, Korkmaz-Icoz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med. 2019;17(1):127.PubMedPubMedCentralCrossRef
45.
go back to reference Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019;4(1):15–26.PubMedPubMedCentralCrossRef Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl Sci. 2019;4(1):15–26.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47(1):32–40.PubMedCrossRef Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47(1):32–40.PubMedCrossRef
48.
go back to reference Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283(4):H1481–8.PubMedCrossRef Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283(4):H1481–8.PubMedCrossRef
Metadata
Title
Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice
Authors
Feng Ju
Geoffrey W. Abbott
Jiaxue Li
Qifeng Wang
Ting Liu
Quanhua Liu
Zhaoyang Hu
Publication date
07-01-2023
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 2/2024
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07419-8

Other articles of this Issue 2/2024

Cardiovascular Drugs and Therapy 2/2024 Go to the issue