Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 4/2013

01-08-2013 | ORIGINAL ARTICLE

Cardioprotection by Farnesol: Role of the Mevalonate Pathway

Authors: Gergő Szűcs, Zsolt Murlasits, Szilvia Török, Gabriella F. Kocsis, János Pálóczi, Anikó Görbe, Tamás Csont, Csaba Csonka, Péter Ferdinandy

Published in: Cardiovascular Drugs and Therapy | Issue 4/2013

Login to get access

Abstract

Purpose

Farnesol is a key metabolite of the mevalonate pathway and known as an antioxidant. We examined whether farnesol treatment protects the ischemic heart.

Methods

Male Wistar rats were treated orally with 0.2, 1, 5, and 50 mg/kg/day farnesol/vehicle for 12 days, respectively. On day 13, the effect of farnesol treatment on cardiac ischemic tolerance and biochemical changes was tested. Therefore, hearts were isolated and subjected either to 30 min coronary occlusion followed by 120 min reperfusion to measure infarct size or to 10 min aerobic perfusion to measure cardiac mevalonate pathway end-products (protein prenylation, cholesterol, coenzyme Q9, coenzyme Q10, dolichol), and 3-nitrotyrosine (oxidative/nitrosative stress marker), respectively. The cytoprotective effect of farnesol was also tested in cardiomyocytes subjected to simulated ischemia/reperfusion.

Results

Farnesol pretreatment decreased infarct size in a U-shaped dose–response manner where 1 mg/kg/day dose reached a statistically significant reduction (22.3 ± 3.9 % vs. 40.9 ± 6.1 % of the area at risk, p < 0.05). Farnesol showed a similar cytoprotection in cardiomyocytes. The cardioprotective dose of farnesol (1 mg/kg/day) significantly increased the marker of protein geranylgeranylation, but did not influence protein farnesylation, cardiac tissue cholesterol, coenzyme Q9, coenzyme Q10, and dolichol. While the cardioprotective dose of farnesol did not influence 3-nitrotyrosine, the highest dose of farnesol (50 mg/kg/day) tested did not show cardioprotection, however, it significantly decreased cardiac 3-nitrotyrosine.

Conclusions

This is the first demonstration that oral farnesol treatment reduces infarct size. The cardioprotective effect of farnesol likely involves increased protein geranylgeranylation and seems to be independent of the antioxidant effect of farnesol.
Literature
1.
go back to reference Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59:418–58.PubMedCrossRef Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59:418–58.PubMedCrossRef
2.
go back to reference Ferdinandy P, Csonka C, Csont T, Szilvassy Z, Dux L. Rapid pacing-induced preconditioning is recaptured by farnesol treatment in hearts of cholesterol-fed rats: role of polyprenyl derivatives and nitric oxide. Mol Cell Biochem. 1998;186:27–34.PubMedCrossRef Ferdinandy P, Csonka C, Csont T, Szilvassy Z, Dux L. Rapid pacing-induced preconditioning is recaptured by farnesol treatment in hearts of cholesterol-fed rats: role of polyprenyl derivatives and nitric oxide. Mol Cell Biochem. 1998;186:27–34.PubMedCrossRef
3.
go back to reference Qamar W, Sultana S. Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. Chem Biol Interact. 2008;176:79–87.PubMedCrossRef Qamar W, Sultana S. Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. Chem Biol Interact. 2008;176:79–87.PubMedCrossRef
4.
go back to reference Jahangir T, Khan TH, Prasad L, Sultana S. Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. Hum Exp Toxicol. 2006;25:235–42.PubMedCrossRef Jahangir T, Khan TH, Prasad L, Sultana S. Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. Hum Exp Toxicol. 2006;25:235–42.PubMedCrossRef
5.
go back to reference Khan R, Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact. 2011;192:193–200.PubMedCrossRef Khan R, Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact. 2011;192:193–200.PubMedCrossRef
6.
go back to reference Crick DC, Andres DA, Waechter CJ. Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochem Biophys Res Commun. 1995;211:590–9.PubMedCrossRef Crick DC, Andres DA, Waechter CJ. Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochem Biophys Res Commun. 1995;211:590–9.PubMedCrossRef
8.
go back to reference Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol. 2006;2:584–90.PubMedCrossRef Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol. 2006;2:584–90.PubMedCrossRef
9.
go back to reference Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res. 2006;47:467–75.PubMedCrossRef Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res. 2006;47:467–75.PubMedCrossRef
11.
go back to reference Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.PubMedCrossRef Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.PubMedCrossRef
12.
go back to reference Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys. 1992;295:230–4.PubMedCrossRef Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys. 1992;295:230–4.PubMedCrossRef
13.
go back to reference Greenberg S, Frishman WH. Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol. 1990;30:596–608.PubMedCrossRef Greenberg S, Frishman WH. Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol. 1990;30:596–608.PubMedCrossRef
14.
go back to reference Hano O, Thompson-Gorman SL, Zweier JL, Lakatta EG. Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+overload during postischemic reperfusion. Am J Physiol. 1994;266:2174–81. Hano O, Thompson-Gorman SL, Zweier JL, Lakatta EG. Coenzyme Q10 enhances cardiac functional and metabolic recovery and reduces Ca2+overload during postischemic reperfusion. Am J Physiol. 1994;266:2174–81.
15.
go back to reference Doucey MA, Hess D, Cacan R, Hofsteenge J. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol Biol Cell. 1998;9:291–300.PubMedCrossRef Doucey MA, Hess D, Cacan R, Hofsteenge J. Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol Biol Cell. 1998;9:291–300.PubMedCrossRef
17.
go back to reference Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.PubMedCrossRef Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–64.PubMedCrossRef
18.
go back to reference Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2003;138:532–43.PubMedCrossRef Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2003;138:532–43.PubMedCrossRef
19.
go back to reference Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res. 1997;33:422–32.PubMedCrossRef Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res. 1997;33:422–32.PubMedCrossRef
20.
go back to reference Kocsis GF, Pipis J, Fekete V, et al. Lovastatin interferes with the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. Am J Physiol Heart Circ Physiol. 2008;294:2406–9.CrossRef Kocsis GF, Pipis J, Fekete V, et al. Lovastatin interferes with the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. Am J Physiol Heart Circ Physiol. 2008;294:2406–9.CrossRef
21.
go back to reference Csonka C, Kupai K, Kocsis GF, et al. Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods. 2010;61:163–70.PubMedCrossRef Csonka C, Kupai K, Kocsis GF, et al. Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods. 2010;61:163–70.PubMedCrossRef
22.
go back to reference Epstein WW, Lever D, Leining LM, Bruenger E, Rilling HC. Quantitation of prenylcysteines by a selective cleavage reaction. Proc Natl Acad Sci U S A. 1991;88:9668–70.PubMedCrossRef Epstein WW, Lever D, Leining LM, Bruenger E, Rilling HC. Quantitation of prenylcysteines by a selective cleavage reaction. Proc Natl Acad Sci U S A. 1991;88:9668–70.PubMedCrossRef
23.
go back to reference Rousseau G, Varin F. Determination of ubiquinone-9 and 10 levels in rat tissues and blood by high-performance liquid chromatography with ultraviolet detection. J Chromatogr Sci. 1998;36:247–52.PubMedCrossRef Rousseau G, Varin F. Determination of ubiquinone-9 and 10 levels in rat tissues and blood by high-performance liquid chromatography with ultraviolet detection. J Chromatogr Sci. 1998;36:247–52.PubMedCrossRef
24.
go back to reference Dini B, Dolfi C, Santucci V, et al. Effects of ageing and increased haemolysis on the levels of dolichol in rat spleen. Exp Gerontol. 2001;37:99–105.PubMedCrossRef Dini B, Dolfi C, Santucci V, et al. Effects of ageing and increased haemolysis on the levels of dolichol in rat spleen. Exp Gerontol. 2001;37:99–105.PubMedCrossRef
25.
go back to reference Csont T, Gorbe A, Bereczki E, et al. Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: role of nitric oxide. J Mol Cell Cardiol. 2010;48:649–52.PubMedCrossRef Csont T, Gorbe A, Bereczki E, et al. Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: role of nitric oxide. J Mol Cell Cardiol. 2010;48:649–52.PubMedCrossRef
26.
go back to reference Li X, Heinzel FR, Boengler K, Schulz R, Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol. 2004;36:161–3.PubMedCrossRef Li X, Heinzel FR, Boengler K, Schulz R, Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol. 2004;36:161–3.PubMedCrossRef
27.
go back to reference Bentinger M, Grunler J, Peterson E, Swiezewska E, Dallner G. Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Arch Biochem Biophys. 1998;353:191–8.PubMedCrossRef Bentinger M, Grunler J, Peterson E, Swiezewska E, Dallner G. Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Arch Biochem Biophys. 1998;353:191–8.PubMedCrossRef
28.
go back to reference Ali BR, Nouvel I, Leung KF, Hume AN, Seabra MC. A novel statin-mediated “prenylation block-and-release” assay provides insight into the membrane targeting mechanisms of small GTPases. Biochem Biophys Res Commun. 2010;397:34–41.PubMedCrossRef Ali BR, Nouvel I, Leung KF, Hume AN, Seabra MC. A novel statin-mediated “prenylation block-and-release” assay provides insight into the membrane targeting mechanisms of small GTPases. Biochem Biophys Res Commun. 2010;397:34–41.PubMedCrossRef
29.
go back to reference Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 2006;47:681–99.PubMedCrossRef Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 2006;47:681–99.PubMedCrossRef
30.
go back to reference Brar BK, Jonassen AK, Egorina EM, et al. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology. 2004;145:24–35.PubMedCrossRef Brar BK, Jonassen AK, Egorina EM, et al. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology. 2004;145:24–35.PubMedCrossRef
31.
go back to reference Xiang SY, Vanhoutte D, Del Re DP, et al. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest. 2011;121:3269–76.PubMedCrossRef Xiang SY, Vanhoutte D, Del Re DP, et al. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest. 2011;121:3269–76.PubMedCrossRef
32.
go back to reference Dougherty CJ, Kubasiak LA, Frazier DP, et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J. 2004;18:1060–70.PubMedCrossRef Dougherty CJ, Kubasiak LA, Frazier DP, et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J. 2004;18:1060–70.PubMedCrossRef
33.
go back to reference Matejikova J, Kucharska J, Pancza D, Ravingerova T. The effect of antioxidant treatment and NOS inhibition on the incidence of ischemia-induced arrhythmias in the diabetic rat heart. Physiol Res. 2008;57 Suppl 2:55–60. Matejikova J, Kucharska J, Pancza D, Ravingerova T. The effect of antioxidant treatment and NOS inhibition on the incidence of ischemia-induced arrhythmias in the diabetic rat heart. Physiol Res. 2008;57 Suppl 2:55–60.
34.
go back to reference Molyneux SL, Florkowski CM, Richards AM, Lever M, Young JM, George PM. Coenzyme Q10; an adjunctive therapy for congestive heart failure? N Z Med J. 2009;122:74–9.PubMed Molyneux SL, Florkowski CM, Richards AM, Lever M, Young JM, George PM. Coenzyme Q10; an adjunctive therapy for congestive heart failure? N Z Med J. 2009;122:74–9.PubMed
35.
go back to reference Kapusta L, Zucker N, Frenckel G et al. From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev. 2012;18:187-96 Kapusta L, Zucker N, Frenckel G et al. From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev. 2012;18:187-96
36.
go back to reference Lefeber DJ, de Brouwer AP, Morava E, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011;7:e1002427.PubMedCrossRef Lefeber DJ, de Brouwer AP, Morava E, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011;7:e1002427.PubMedCrossRef
37.
go back to reference Chagas CE, Vieira A, Ong TP, Moreno FS. Farnesol inhibits cell proliferation and induces apoptosis after partial hepatectomy in rats. Acta Cir Bras. 2009;24:377–82.PubMedCrossRef Chagas CE, Vieira A, Ong TP, Moreno FS. Farnesol inhibits cell proliferation and induces apoptosis after partial hepatectomy in rats. Acta Cir Bras. 2009;24:377–82.PubMedCrossRef
38.
go back to reference Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res. 2007;67:7929–36.PubMedCrossRef Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res. 2007;67:7929–36.PubMedCrossRef
Metadata
Title
Cardioprotection by Farnesol: Role of the Mevalonate Pathway
Authors
Gergő Szűcs
Zsolt Murlasits
Szilvia Török
Gabriella F. Kocsis
János Pálóczi
Anikó Görbe
Tamás Csont
Csaba Csonka
Péter Ferdinandy
Publication date
01-08-2013
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 4/2013
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-013-6460-2

Other articles of this Issue 4/2013

Cardiovascular Drugs and Therapy 4/2013 Go to the issue