Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2024

15-06-2022 | Cardiomyopathy | Review Article

Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy

Authors: Oluwabukunmi Modupe Salami, Olive Habimana, Jin-fu Peng, Guang-Hui Yi

Published in: Cardiovascular Drugs and Therapy | Issue 1/2024

Login to get access

Abstract

Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Literature
1.
go back to reference Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy—Unusual Metabolic Dysfunction of the Heart. Int J Environ Res Public Health. 2021;18(14):7598.PubMedPubMedCentralCrossRef Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy—Unusual Metabolic Dysfunction of the Heart. Int J Environ Res Public Health. 2021;18(14):7598.PubMedPubMedCentralCrossRef
2.
go back to reference Donnino MW, Andersen LW, Chase M, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360.PubMedPubMedCentralCrossRef Donnino MW, Andersen LW, Chase M, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44(2):360.PubMedPubMedCentralCrossRef
3.
go back to reference Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
5.
6.
go back to reference Rackow E, Kaufman B, Falk J, Astiz M, Weil M. Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock. 1987;22(1):11–22.PubMed Rackow E, Kaufman B, Falk J, Astiz M, Weil M. Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock. 1987;22(1):11–22.PubMed
7.
go back to reference Martin L, Derwall M, Al Zoubi S, et al. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest. 2019;155(2):427–37.PubMedCrossRef Martin L, Derwall M, Al Zoubi S, et al. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest. 2019;155(2):427–37.PubMedCrossRef
8.
go back to reference Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity. 2017;2017. Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity. 2017;2017.
10.
go back to reference Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne). 2021;8:628302.PubMedCrossRef Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne). 2021;8:628302.PubMedCrossRef
11.
go back to reference Zang Q, Maass DL, Tsai SJ, Horton JW. Cardiac mitochondrial damage and inflammation responses in sepsis. Surg Infect. 2007;8(1):41–54.CrossRef Zang Q, Maass DL, Tsai SJ, Horton JW. Cardiac mitochondrial damage and inflammation responses in sepsis. Surg Infect. 2007;8(1):41–54.CrossRef
12.
go back to reference Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424–34.PubMedCrossRef Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424–34.PubMedCrossRef
13.
go back to reference Sato R, Kuriyama A, Takada T, Nasu M, Luthe SK. Prevalence and risk factors of sepsis-induced cardiomyopathy: A retrospective cohort study. Medicine (Baltimore). 2016;95(39):e5031.PubMedCrossRef Sato R, Kuriyama A, Takada T, Nasu M, Luthe SK. Prevalence and risk factors of sepsis-induced cardiomyopathy: A retrospective cohort study. Medicine (Baltimore). 2016;95(39):e5031.PubMedCrossRef
14.
go back to reference Jeong HS, Lee TH, Bang CH, Kim JH, Hong SJ. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative retrospective study. Medicine (Baltimore). 2018;97(13):e0263.PubMedCrossRef Jeong HS, Lee TH, Bang CH, Kim JH, Hong SJ. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative retrospective study. Medicine (Baltimore). 2018;97(13):e0263.PubMedCrossRef
15.
go back to reference L’Heureux M, Sternberg M, Brath L, Turlington J, Kashiouris MG. Sepsis-Induced Cardiomyopathy: a Comprehensive Review. Curr Cardiol Rep. 2020;22(5):35.PubMedPubMedCentralCrossRef L’Heureux M, Sternberg M, Brath L, Turlington J, Kashiouris MG. Sepsis-Induced Cardiomyopathy: a Comprehensive Review. Curr Cardiol Rep. 2020;22(5):35.PubMedPubMedCentralCrossRef
16.
go back to reference Mekontso Dessap A, Razazi K, Brun-Buisson C, Deux J-F. Myocardial viability in human septic heart. Intensive Care Med. 2014;40(11):1746–8.PubMedCrossRef Mekontso Dessap A, Razazi K, Brun-Buisson C, Deux J-F. Myocardial viability in human septic heart. Intensive Care Med. 2014;40(11):1746–8.PubMedCrossRef
17.
go back to reference Charpentier J, Luyt C-E, Fulla Y, et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004;32(3):660–5.PubMedCrossRef Charpentier J, Luyt C-E, Fulla Y, et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004;32(3):660–5.PubMedCrossRef
18.
go back to reference Mehta NJ, Khan IA, Gupta V, et al. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol. 2004;95(1):13–7.PubMedCrossRef Mehta NJ, Khan IA, Gupta V, et al. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol. 2004;95(1):13–7.PubMedCrossRef
19.
go back to reference Werdan K, Oelke A, Hettwer S, et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol. 2011;100(8):661–8.PubMedCrossRef Werdan K, Oelke A, Hettwer S, et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol. 2011;100(8):661–8.PubMedCrossRef
20.
go back to reference Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3(1):1–7.CrossRef Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3(1):1–7.CrossRef
21.
go back to reference Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: a meta-analysis of randomized trials. J Crit Care. 2015;30(5):908–13.PubMedCrossRef Zangrillo A, Putzu A, Monaco F, et al. Levosimendan reduces mortality in patients with severe sepsis and septic shock: a meta-analysis of randomized trials. J Crit Care. 2015;30(5):908–13.PubMedCrossRef
22.
go back to reference Schlesinger JJ, Burger CF. Methylene Blue for Acute Septic Cardiomyopathy in a Burned Patient. J Burn Care Res. 2016;37(3):e287–91.PubMedCrossRef Schlesinger JJ, Burger CF. Methylene Blue for Acute Septic Cardiomyopathy in a Burned Patient. J Burn Care Res. 2016;37(3):e287–91.PubMedCrossRef
23.
go back to reference Fan Y, Jiang M, Gong D, Zou C. Efficacy and safety of low-molecular-weight heparin in patients with sepsis: a meta-analysis of randomized controlled trials. Sci Rep. 2016;6:25984.ADSPubMedPubMedCentralCrossRef Fan Y, Jiang M, Gong D, Zou C. Efficacy and safety of low-molecular-weight heparin in patients with sepsis: a meta-analysis of randomized controlled trials. Sci Rep. 2016;6:25984.ADSPubMedPubMedCentralCrossRef
24.
go back to reference Krishnan K, Wassermann TB, Tednes P, Bonderski V, Rech MA. Beyond the bundle: Clinical controversies in the management of sepsis in emergency medicine patients. Am J Emerg Med. 2022;51:296–303.PubMedCrossRef Krishnan K, Wassermann TB, Tednes P, Bonderski V, Rech MA. Beyond the bundle: Clinical controversies in the management of sepsis in emergency medicine patients. Am J Emerg Med. 2022;51:296–303.PubMedCrossRef
25.
go back to reference Vogel DJ, Murray J, Czapran AZ, et al. Veno-arterio-venous ECMO for septic cardiomyopathy: a single-centre experience. Perfusion. 2018;33(1_suppl):57–64. Vogel DJ, Murray J, Czapran AZ, et al. Veno-arterio-venous ECMO for septic cardiomyopathy: a single-centre experience. Perfusion. 2018;33(1_suppl):57–64.
26.
go back to reference Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol. 2016;81:307–14.PubMedCrossRef Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol. 2016;81:307–14.PubMedCrossRef
27.
go back to reference Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2–3):153–66.PubMedCrossRef Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2–3):153–66.PubMedCrossRef
28.
go back to reference Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015;78:100–6.PubMedPubMedCentralCrossRef Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015;78:100–6.PubMedPubMedCentralCrossRef
29.
go back to reference Bernardi P, Krauskopf A, Basso E, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273(10):2077–99.PubMedCrossRef Bernardi P, Krauskopf A, Basso E, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273(10):2077–99.PubMedCrossRef
31.
go back to reference Larche J, Lancel S, Hassoun SM, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006;48(2):377–85.PubMedCrossRef Larche J, Lancel S, Hassoun SM, et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 2006;48(2):377–85.PubMedCrossRef
32.
go back to reference Pan P, Zhang H, Su L, Wang X, Liu D. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules. 2018;23(3):675.PubMedPubMedCentralCrossRef Pan P, Zhang H, Su L, Wang X, Liu D. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules. 2018;23(3):675.PubMedPubMedCentralCrossRef
33.
go back to reference Fauvel H, Marchetti P, Obert G, et al. Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am J Respir Crit Care Med. 2002;165(4):449–55.PubMedCrossRef Fauvel H, Marchetti P, Obert G, et al. Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am J Respir Crit Care Med. 2002;165(4):449–55.PubMedCrossRef
34.
go back to reference Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef
35.
go back to reference Hu Y, Yan JB, Zheng MZ, et al. Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide-induced cardiac dysfunction in rats. Mol Med Rep. 2015;11(2):1509–15.PubMedCrossRef Hu Y, Yan JB, Zheng MZ, et al. Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide-induced cardiac dysfunction in rats. Mol Med Rep. 2015;11(2):1509–15.PubMedCrossRef
36.
go back to reference MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1–mediated NF-E2–related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2012;185(8):851–61.PubMedPubMedCentralCrossRef MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1–mediated NF-E2–related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2012;185(8):851–61.PubMedPubMedCentralCrossRef
37.
go back to reference Durand A, Duburcq T, Dekeyser T, et al. Involvement of mitochondrial disorders in septic cardiomyopathy. Oxidative medicine and cellular longevity. 2017;2017. Durand A, Duburcq T, Dekeyser T, et al. Involvement of mitochondrial disorders in septic cardiomyopathy. Oxidative medicine and cellular longevity. 2017;2017.
38.
go back to reference Liang D, Huang A, Jin Y, et al. Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice. American J Transl Res. 2018;10(5):1422. Liang D, Huang A, Jin Y, et al. Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice. American J Transl Res. 2018;10(5):1422.
39.
go back to reference Rahmel T, Marko B, Nowak H, et al. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression. Sci Rep. 2020;10(1):1–11.ADSCrossRef Rahmel T, Marko B, Nowak H, et al. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression. Sci Rep. 2020;10(1):1–11.ADSCrossRef
40.
go back to reference Carré JE, Orban J-C, Re L, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182(6):745–51.PubMedPubMedCentralCrossRef Carré JE, Orban J-C, Re L, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182(6):745–51.PubMedPubMedCentralCrossRef
41.
go back to reference Nagy G, Koncz A, Perl A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+-and redox-dependent production of nitric oxide. J Immunol. 2003;171(10):5188–97.PubMedCrossRef Nagy G, Koncz A, Perl A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+-and redox-dependent production of nitric oxide. J Immunol. 2003;171(10):5188–97.PubMedCrossRef
42.
go back to reference Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68(1):20–48.PubMedCrossRef Suliman HB, Piantadosi CA. Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 2016;68(1):20–48.PubMedCrossRef
43.
go back to reference Lancel S, Hassoun SM, Favory R, et al. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther. 2009;329(2):641–8.PubMedCrossRef Lancel S, Hassoun SM, Favory R, et al. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther. 2009;329(2):641–8.PubMedCrossRef
44.
go back to reference Wang X, Qin W, Qiu X, et al. A novel role of exogenous carbon monoxide on protecting cardiac function and improving survival against sepsis via mitochondrial energetic metabolism pathway. Int J Biol Sci. 2014;10(7):777.PubMedPubMedCentralCrossRef Wang X, Qin W, Qiu X, et al. A novel role of exogenous carbon monoxide on protecting cardiac function and improving survival against sepsis via mitochondrial energetic metabolism pathway. Int J Biol Sci. 2014;10(7):777.PubMedPubMedCentralCrossRef
45.
go back to reference Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci. 2007;120(2):299–308.PubMedCrossRef Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci. 2007;120(2):299–308.PubMedCrossRef
46.
go back to reference Mattingly KA, Ivanova MM, Riggs KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol. 2008;22(3):609–22.PubMedCrossRef Mattingly KA, Ivanova MM, Riggs KA, et al. Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol. 2008;22(3):609–22.PubMedCrossRef
47.
go back to reference Li Y, Feng Y-F, Liu X-T, et al. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 2021;38:101771.PubMedCrossRef Li Y, Feng Y-F, Liu X-T, et al. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 2021;38:101771.PubMedCrossRef
48.
go back to reference Hondares E, Pineda-Torra I, Iglesias R, et al. PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem Biophys Res Commun. 2007;354(4):1021–7.PubMedCrossRef Hondares E, Pineda-Torra I, Iglesias R, et al. PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem Biophys Res Commun. 2007;354(4):1021–7.PubMedCrossRef
49.
go back to reference Yang Y, Zhu Y, Xiao J, et al. Maresin conjugates in tissue regeneration 1 prevents lipopolysaccharide-induced cardiac dysfunction through improvement of mitochondrial biogenesis and function. Biochem Pharmacol. 2020;177:114005.PubMedCrossRef Yang Y, Zhu Y, Xiao J, et al. Maresin conjugates in tissue regeneration 1 prevents lipopolysaccharide-induced cardiac dysfunction through improvement of mitochondrial biogenesis and function. Biochem Pharmacol. 2020;177:114005.PubMedCrossRef
50.
go back to reference Sánchez-Villamil JP, D’Annunzio V, Finocchietto P, et al. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. Int J Biochem Cell Biol. 2016;81:323–34.PubMedCrossRef Sánchez-Villamil JP, D’Annunzio V, Finocchietto P, et al. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. Int J Biochem Cell Biol. 2016;81:323–34.PubMedCrossRef
51.
go back to reference Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–22.PubMedCrossRef Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–22.PubMedCrossRef
52.
go back to reference Xin T, Lu C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging (Albany NY). 2020;12(16):16224.PubMedCrossRef Xin T, Lu C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging (Albany NY). 2020;12(16):16224.PubMedCrossRef
53.
go back to reference Russell LK, Mansfield CM, Lehman JJ, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.PubMedCrossRef Russell LK, Mansfield CM, Lehman JJ, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.PubMedCrossRef
54.
go back to reference Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease. 2019;1865(4):759–73.PubMedCrossRef Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease. 2019;1865(4):759–73.PubMedCrossRef
55.
go back to reference Ni H-M, Williams JA, Ding W-X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13.PubMedCrossRef Ni H-M, Williams JA, Ding W-X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 2015;4:6–13.PubMedCrossRef
56.
go back to reference Marín-García J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev. 2016;21(2):123–36.PubMedCrossRef Marín-García J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev. 2016;21(2):123–36.PubMedCrossRef
57.
go back to reference Jin J-Y, Wei X-X, Zhi X-L, Wang X-H, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacologica Sinica. 2021;42(5):655–64.PubMedCrossRef Jin J-Y, Wei X-X, Zhi X-L, Wang X-H, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacologica Sinica. 2021;42(5):655–64.PubMedCrossRef
58.
go back to reference Ishihara T, Ban-Ishihara R, Maeda M, et al. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol. 2015;35(1):211–23.PubMedCrossRef Ishihara T, Ban-Ishihara R, Maeda M, et al. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol. 2015;35(1):211–23.PubMedCrossRef
60.
go back to reference Disatnik MH, Ferreira JC, Campos JC, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461.PubMedPubMedCentralCrossRef Disatnik MH, Ferreira JC, Campos JC, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461.PubMedPubMedCentralCrossRef
61.
go back to reference Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC 1-HK 2-mPTP-mitophagy axis. J Pineal Res. 2017;63(1):e12413.PubMedPubMedCentralCrossRef Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC 1-HK 2-mPTP-mitophagy axis. J Pineal Res. 2017;63(1):e12413.PubMedPubMedCentralCrossRef
62.
go back to reference Hernandez-Resendiz S, Prunier F, Girao H, et al. Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med. 2020;24(12):6571–85.PubMedPubMedCentralCrossRef Hernandez-Resendiz S, Prunier F, Girao H, et al. Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med. 2020;24(12):6571–85.PubMedPubMedCentralCrossRef
63.
go back to reference Zang QS, Sadek H, Maass DL, et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American J Physiol-Heart Circ Physiol. 2012;302(9):H1847–59.CrossRef Zang QS, Sadek H, Maass DL, et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American J Physiol-Heart Circ Physiol. 2012;302(9):H1847–59.CrossRef
64.
go back to reference Wu Y, Yao Y-M, Lu Z-Q. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med. 2019;97(4):451–62.PubMedCrossRef Wu Y, Yao Y-M, Lu Z-Q. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med. 2019;97(4):451–62.PubMedCrossRef
65.
go back to reference Gonzalez AS, Elguero ME, Finocchietto P, et al. Abnormal mitochondrial fusion–fission balance contributes to the progression of experimental sepsis. Free Radical Res. 2014;48(7):769–83.CrossRef Gonzalez AS, Elguero ME, Finocchietto P, et al. Abnormal mitochondrial fusion–fission balance contributes to the progression of experimental sepsis. Free Radical Res. 2014;48(7):769–83.CrossRef
66.
67.
go back to reference Wu D, Dasgupta A, Chen KH, et al. Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury. FASEB J. 2020;34(1):1447–64.PubMedCrossRef Wu D, Dasgupta A, Chen KH, et al. Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury. FASEB J. 2020;34(1):1447–64.PubMedCrossRef
68.
go back to reference Tan Y, Ouyang H, Xiao X, Zhong J, Dong M. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones. 2019;24(3):595–608.PubMedPubMedCentralCrossRef Tan Y, Ouyang H, Xiao X, Zhong J, Dong M. Irisin ameliorates septic cardiomyopathy via inhibiting DRP1-related mitochondrial fission and normalizing the JNK-LATS2 signaling pathway. Cell Stress Chaperones. 2019;24(3):595–608.PubMedPubMedCentralCrossRef
69.
go back to reference Yu W, Mei X, Zhang Q, et al. Yap overexpression attenuates septic cardiomyopathy by inhibiting DRP1-related mitochondrial fission and activating the ERK signaling pathway. J Recept Signal Transduct Res. 2019;39(2):175–86.PubMedCrossRef Yu W, Mei X, Zhang Q, et al. Yap overexpression attenuates septic cardiomyopathy by inhibiting DRP1-related mitochondrial fission and activating the ERK signaling pathway. J Recept Signal Transduct Res. 2019;39(2):175–86.PubMedCrossRef
70.
go back to reference Pride CK, Mo L, Quesnelle K, et al. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovasc Res. 2014;101(1):57–68.CrossRef Pride CK, Mo L, Quesnelle K, et al. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion. Cardiovasc Res. 2014;101(1):57–68.CrossRef
71.
go back to reference Bian X, Xu J, Zhao H, et al. Zinc-induced SUMOylation of dynamin-related protein 1 protects the heart against ischemia-reperfusion injury. Oxidative medicine and cellular longevity. 2019;2019. Bian X, Xu J, Zhao H, et al. Zinc-induced SUMOylation of dynamin-related protein 1 protects the heart against ischemia-reperfusion injury. Oxidative medicine and cellular longevity. 2019;2019.
72.
go back to reference Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116(2):264–78.PubMedCrossRef Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116(2):264–78.PubMedCrossRef
73.
go back to reference Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharmaceutica Sinica B. 2020;10(10):1866–79.PubMedPubMedCentralCrossRef Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharmaceutica Sinica B. 2020;10(10):1866–79.PubMedPubMedCentralCrossRef
74.
go back to reference Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20(15):3525–32.PubMedPubMedCentralCrossRef Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20(15):3525–32.PubMedPubMedCentralCrossRef
75.
go back to reference Ferreira JCB, Campos JC, Qvit N, et al. A selective inhibitor of mitofusin 1-βIIPKC association improves heart failure outcome in rats. Nat Commun. 2019;10(1):329.ADSPubMedPubMedCentralCrossRef Ferreira JCB, Campos JC, Qvit N, et al. A selective inhibitor of mitofusin 1-βIIPKC association improves heart failure outcome in rats. Nat Commun. 2019;10(1):329.ADSPubMedPubMedCentralCrossRef
77.
go back to reference Burke N, Hall AR, Hausenloy DJ. OPA1 in Cardiovascular Health and Disease. Curr Drug Targets. 2015;16(8):912–20.PubMedCrossRef Burke N, Hall AR, Hausenloy DJ. OPA1 in Cardiovascular Health and Disease. Curr Drug Targets. 2015;16(8):912–20.PubMedCrossRef
78.
go back to reference Huang J, Li R, Wang C. The Role of Mitochondrial Quality Control in Cardiac Ischemia/Reperfusion Injury. Oxidative Med Cellular Longevity. 2021;2021. Huang J, Li R, Wang C. The Role of Mitochondrial Quality Control in Cardiac Ischemia/Reperfusion Injury. Oxidative Med Cellular Longevity. 2021;2021.
79.
go back to reference Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280(26):25060–70.PubMedCrossRef Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280(26):25060–70.PubMedCrossRef
80.
go back to reference Papanicolaou KN, Khairallah RJ, Ngoh GA, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.PubMedPubMedCentralCrossRef Papanicolaou KN, Khairallah RJ, Ngoh GA, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.PubMedPubMedCentralCrossRef
81.
go back to reference Dorn GW, Clark CF, Eschenbacher WH, et al. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res. 2011;108(1):12–7.PubMedCrossRef Dorn GW, Clark CF, Eschenbacher WH, et al. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res. 2011;108(1):12–7.PubMedCrossRef
82.
go back to reference Chen L, Liu T, Tran A, et al. OPA 1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability. J Am Heart Assoc. 2012;1(5):e003012.PubMedPubMedCentralCrossRef Chen L, Liu T, Tran A, et al. OPA 1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability. J Am Heart Assoc. 2012;1(5):e003012.PubMedPubMedCentralCrossRef
83.
go back to reference Merkwirth C, Dargazanli S, Tatsuta T, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88.PubMedPubMedCentralCrossRef Merkwirth C, Dargazanli S, Tatsuta T, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88.PubMedPubMedCentralCrossRef
84.
go back to reference Zhang Y, Wang Y, Xu J, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res. 2019;66(2):e12542.PubMedCrossRef Zhang Y, Wang Y, Xu J, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res. 2019;66(2):e12542.PubMedCrossRef
85.
go back to reference Maneechote C, Palee S, Kerdphoo S, et al. Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin Sci. 2019;133(3):497–513.CrossRef Maneechote C, Palee S, Kerdphoo S, et al. Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin Sci. 2019;133(3):497–513.CrossRef
86.
go back to reference Shen T, Zheng M, Cao C, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.PubMedCrossRef Shen T, Zheng M, Cao C, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.PubMedCrossRef
87.
go back to reference Ong S-B, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.PubMedCrossRef Ong S-B, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.PubMedCrossRef
88.
go back to reference Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39.PubMedCrossRef Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca2+ Signaling and Quality Control. Trends Mol Med. 2020;26(1):21–39.PubMedCrossRef
89.
go back to reference Brealey D, Singer M. Mitochondrial dysfunction in sepsis. Current Infectious Disease Rep. 2003;5(5):365–71.CrossRef Brealey D, Singer M. Mitochondrial dysfunction in sepsis. Current Infectious Disease Rep. 2003;5(5):365–71.CrossRef
91.
go back to reference Giacalone M, Martinelli R, Abramo A, et al. Rapid reversal of severe lactic acidosis after thiamine administration in critically ill adults: a report of 3 cases. Nutr Clin Pract. 2015;30(1):104–10.PubMedCrossRef Giacalone M, Martinelli R, Abramo A, et al. Rapid reversal of severe lactic acidosis after thiamine administration in critically ill adults: a report of 3 cases. Nutr Clin Pract. 2015;30(1):104–10.PubMedCrossRef
92.
go back to reference Escames G, López LC, Ortiz F, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 2007;274(8):2135–47.PubMedCrossRef Escames G, López LC, Ortiz F, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 2007;274(8):2135–47.PubMedCrossRef
93.
go back to reference Galley HF, Lowes DA, Allen L, et al. Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res. 2014;56(4):427–38.PubMedPubMedCentralCrossRef Galley HF, Lowes DA, Allen L, et al. Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res. 2014;56(4):427–38.PubMedPubMedCentralCrossRef
94.
go back to reference McCall CE, Zabalawi M, Liu T, et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight. 2018;3:15.CrossRef McCall CE, Zabalawi M, Liu T, et al. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight. 2018;3:15.CrossRef
95.
go back to reference Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med. 1992;327(22):1564–9.PubMedCrossRef Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med. 1992;327(22):1564–9.PubMedCrossRef
96.
go back to reference Eyenga P, Roussel D, Rey B, et al. Mechanical ventilation preserves diaphragm mitochondrial function in a rat sepsis model. Intensive Care Med Exp. 2021;9(1):19.PubMedPubMedCentralCrossRef Eyenga P, Roussel D, Rey B, et al. Mechanical ventilation preserves diaphragm mitochondrial function in a rat sepsis model. Intensive Care Med Exp. 2021;9(1):19.PubMedPubMedCentralCrossRef
97.
go back to reference Geng N, Ren L, Xu L, Zou D, Pang W. Clinical outcomes of nicorandil administration in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2021;21(1):488.PubMedPubMedCentralCrossRef Geng N, Ren L, Xu L, Zou D, Pang W. Clinical outcomes of nicorandil administration in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2021;21(1):488.PubMedPubMedCentralCrossRef
98.
go back to reference Bank HV, Hurtado-Thiele M, Oshimura N, Simcox J. Mitochondrial Lipid Signaling and Adaptive Thermogenesis. Metabolites. 2021;11(2):124.CrossRef Bank HV, Hurtado-Thiele M, Oshimura N, Simcox J. Mitochondrial Lipid Signaling and Adaptive Thermogenesis. Metabolites. 2021;11(2):124.CrossRef
99.
go back to reference Xie C, Zhang Y, Tran TD, et al. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS ONE. 2015;10(8):e0136816.PubMedPubMedCentralCrossRef Xie C, Zhang Y, Tran TD, et al. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS ONE. 2015;10(8):e0136816.PubMedPubMedCentralCrossRef
100.
go back to reference Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE. 2010;5(7):e11707.ADSPubMedPubMedCentralCrossRef Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE. 2010;5(7):e11707.ADSPubMedPubMedCentralCrossRef
101.
103.
go back to reference Chen Huang J-D, Lyu S-L, Liu J-J, Zeng C, Q-Y. Correlation between uncoupling protein 2 expression and myocardial mitochondrial injury in rats with sepsis induced by lipopolysaccharide Zhongguo dang dai er ke za zhi. Chinese J Contemporary Pediatr. 2016;18(2):159–64. Chen Huang J-D, Lyu S-L, Liu J-J, Zeng C, Q-Y. Correlation between uncoupling protein 2 expression and myocardial mitochondrial injury in rats with sepsis induced by lipopolysaccharide Zhongguo dang dai er ke za zhi. Chinese J Contemporary Pediatr. 2016;18(2):159–64.
104.
go back to reference Huang J, Peng W, Zheng Y, et al. Upregulation of UCP2 expression protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes. Oxidative medicine and cellular longevity. 2019;2019. Huang J, Peng W, Zheng Y, et al. Upregulation of UCP2 expression protects against LPS-induced oxidative stress and apoptosis in cardiomyocytes. Oxidative medicine and cellular longevity. 2019;2019.
105.
go back to reference Zheng G, Lyu J, Liu S, et al. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. Int J Mol Med. 2015;35(6):1525–36.PubMedPubMedCentralCrossRef Zheng G, Lyu J, Liu S, et al. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. Int J Mol Med. 2015;35(6):1525–36.PubMedPubMedCentralCrossRef
106.
go back to reference Chen Y, Chen G, Zhang J, et al. Uncoupling protein 2 facilitates insulin-elicited protection against lipopolysaccharide-induced myocardial dysfunction. Mater Express. 2020;10(3):337–49.CrossRef Chen Y, Chen G, Zhang J, et al. Uncoupling protein 2 facilitates insulin-elicited protection against lipopolysaccharide-induced myocardial dysfunction. Mater Express. 2020;10(3):337–49.CrossRef
107.
go back to reference Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem. 2005;12(22):2601–23.PubMedCrossRef Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem. 2005;12(22):2601–23.PubMedCrossRef
108.
go back to reference Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab. 2012;23(9):477–87.PubMedCrossRef Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab. 2012;23(9):477–87.PubMedCrossRef
109.
110.
go back to reference Ganten D, Ruckpaul K. Encyclopedic reference of genomics and proteomics in molecular medicine. Springer; 2006. Ganten D, Ruckpaul K. Encyclopedic reference of genomics and proteomics in molecular medicine. Springer; 2006.
111.
go back to reference Kumar S, Gupta E, Srivastava VK, et al. Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br J Biomed Sci. 2019;76(1):29–34.PubMedCrossRef Kumar S, Gupta E, Srivastava VK, et al. Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br J Biomed Sci. 2019;76(1):29–34.PubMedCrossRef
112.
go back to reference MatÉs JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.PubMedCrossRef MatÉs JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.PubMedCrossRef
113.
go back to reference Supinski GS, Callahan LA. Polyethylene glycol–superoxide dismutase prevents endotoxin-induced cardiac dysfunction. Am J Respir Crit Care Med. 2006;173(11):1240–7.PubMedPubMedCentralCrossRef Supinski GS, Callahan LA. Polyethylene glycol–superoxide dismutase prevents endotoxin-induced cardiac dysfunction. Am J Respir Crit Care Med. 2006;173(11):1240–7.PubMedPubMedCentralCrossRef
114.
go back to reference Liu Y, Yang W, Sun X, et al. SS31 ameliorates sepsis-induced heart injury by inhibiting oxidative stress and inflammation. Inflammation. 2019;42(6):2170–80.PubMedCrossRef Liu Y, Yang W, Sun X, et al. SS31 ameliorates sepsis-induced heart injury by inhibiting oxidative stress and inflammation. Inflammation. 2019;42(6):2170–80.PubMedCrossRef
115.
go back to reference Wang Z, Bu L, Yang P, Feng S, Xu F. Alleviation of sepsis-induced cardiac dysfunction by overexpression of Sestrin2 is associated with inhibition of p-S6K and activation of the p-AMPK pathway. Mol Med Rep. 2019;20(3):2511–8.PubMedPubMedCentral Wang Z, Bu L, Yang P, Feng S, Xu F. Alleviation of sepsis-induced cardiac dysfunction by overexpression of Sestrin2 is associated with inhibition of p-S6K and activation of the p-AMPK pathway. Mol Med Rep. 2019;20(3):2511–8.PubMedPubMedCentral
116.
go back to reference Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304(5670):596–600.ADSPubMedCrossRef Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304(5670):596–600.ADSPubMedCrossRef
117.
go back to reference Abitagaoglu S, Akinci S, Saricaoglu F, et al. Effect of Coenzyme Q10 on Organ Damage in Sepsis. Bratisl Lek Listy. 2015;116(7):433–9.PubMed Abitagaoglu S, Akinci S, Saricaoglu F, et al. Effect of Coenzyme Q10 on Organ Damage in Sepsis. Bratisl Lek Listy. 2015;116(7):433–9.PubMed
118.
go back to reference Soltani R, Alikiaie B, Shafiee F, Amiri H, Mousavi S. Coenzyme Q10 improves the survival and reduces inflammatory markers in septic patients. Bratisl Lek Listy. 2020;121(2):154–8.PubMed Soltani R, Alikiaie B, Shafiee F, Amiri H, Mousavi S. Coenzyme Q10 improves the survival and reduces inflammatory markers in septic patients. Bratisl Lek Listy. 2020;121(2):154–8.PubMed
119.
go back to reference Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med. 2008;45(11):1559–65.PubMedCrossRef Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med. 2008;45(11):1559–65.PubMedCrossRef
120.
go back to reference Kokkinaki D, Hoffman M, Kalliora C, et al. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy. J Mol Cell Cardiol. 2019;127:232–45.PubMedPubMedCentralCrossRef Kokkinaki D, Hoffman M, Kalliora C, et al. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy. J Mol Cell Cardiol. 2019;127:232–45.PubMedPubMedCentralCrossRef
121.
go back to reference Mattox TA, Psaltis C, Weihbrecht K, et al. Prohibitin-1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. J Am Heart Assoc. 2021;10(14):e019877.PubMedPubMedCentralCrossRef Mattox TA, Psaltis C, Weihbrecht K, et al. Prohibitin-1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. J Am Heart Assoc. 2021;10(14):e019877.PubMedPubMedCentralCrossRef
122.
go back to reference Lee M-T, Jung S-Y, Baek MS, Shin J, Kim W-Y. Early Vitamin C, Hydrocortisone, and Thiamine Treatment for Septic Cardiomyopathy: A Propensity Score Analysis. J Personalized Med. 2021;11(7):610.CrossRef Lee M-T, Jung S-Y, Baek MS, Shin J, Kim W-Y. Early Vitamin C, Hydrocortisone, and Thiamine Treatment for Septic Cardiomyopathy: A Propensity Score Analysis. J Personalized Med. 2021;11(7):610.CrossRef
123.
go back to reference Hobai IA, Edgecomb J, LaBarge K, Colucci WS. Dysregulation of intracellular calcium transporters in animal models of sepsis induced cardiomyopathy. Shock (Augusta, Ga). 2015;43(1):3.PubMedCrossRef Hobai IA, Edgecomb J, LaBarge K, Colucci WS. Dysregulation of intracellular calcium transporters in animal models of sepsis induced cardiomyopathy. Shock (Augusta, Ga). 2015;43(1):3.PubMedCrossRef
124.
go back to reference Hassoun SM, Marechal X, Montaigne D, et al. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med. 2008;36(9):2590–6.PubMedCrossRef Hassoun SM, Marechal X, Montaigne D, et al. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med. 2008;36(9):2590–6.PubMedCrossRef
125.
go back to reference Joseph LC, Kokkinaki D, Valenti M-C, et al. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight. 2017;2:17.CrossRef Joseph LC, Kokkinaki D, Valenti M-C, et al. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight. 2017;2:17.CrossRef
126.
go back to reference Zhou Q, Xie M, Zhu J, et al. PINK1 Contained in huMSCs-Exosomes Prevents Cardiomyocyte Mitochondrial Calcium Overload in Sepsis by Recovering Mitochondrial Ca2+ Efflux. 2020. Zhou Q, Xie M, Zhu J, et al. PINK1 Contained in huMSCs-Exosomes Prevents Cardiomyocyte Mitochondrial Calcium Overload in Sepsis by Recovering Mitochondrial Ca2+ Efflux. 2020.
127.
go back to reference Wang L, Wei Y. The Improvements of Cardiac Calcium Handing and Cardiomyopathy in Septic Rats via Nos Signaling by Neuregulin-1. Circulation. 2018;138(Suppl_1):A11603-A. Wang L, Wei Y. The Improvements of Cardiac Calcium Handing and Cardiomyopathy in Septic Rats via Nos Signaling by Neuregulin-1. Circulation. 2018;138(Suppl_1):A11603-A.
128.
go back to reference Wiewel MA, Van Vught LA, Scicluna BP, et al. Prior use of calcium channel blockers is associated with decreased mortality in critically ill patients with sepsis: a prospective observational study. Crit Care Med. 2017;45(3):454–63.PubMedCrossRef Wiewel MA, Van Vught LA, Scicluna BP, et al. Prior use of calcium channel blockers is associated with decreased mortality in critically ill patients with sepsis: a prospective observational study. Crit Care Med. 2017;45(3):454–63.PubMedCrossRef
129.
go back to reference Shang X, Lin K, Yu R, et al. Resveratrol Protects the Myocardium in Sepsis by Activating the Phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway and Inhibiting the Nuclear Factor-κB (NF-κB) Signaling Pathway. Med Sci Monit. 2019;25:9290–8.PubMedPubMedCentralCrossRef Shang X, Lin K, Yu R, et al. Resveratrol Protects the Myocardium in Sepsis by Activating the Phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway and Inhibiting the Nuclear Factor-κB (NF-κB) Signaling Pathway. Med Sci Monit. 2019;25:9290–8.PubMedPubMedCentralCrossRef
130.
go back to reference Smeding L, Leong-Poi H, Hu P, et al. Salutary effect of resveratrol on sepsis-induced myocardial depression. Crit Care Med. 2012;40(6):1896–907.PubMedCrossRef Smeding L, Leong-Poi H, Hu P, et al. Salutary effect of resveratrol on sepsis-induced myocardial depression. Crit Care Med. 2012;40(6):1896–907.PubMedCrossRef
133.
go back to reference Kung CT, Hsiao SY, Tsai TC, et al. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med. 2012;10:130.PubMedPubMedCentralCrossRef Kung CT, Hsiao SY, Tsai TC, et al. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med. 2012;10:130.PubMedPubMedCentralCrossRef
134.
go back to reference Jung SS, Moon JS, Xu JF, et al. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol. 2015;308(10):L1058–67.PubMedPubMedCentralCrossRef Jung SS, Moon JS, Xu JF, et al. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol. 2015;308(10):L1058–67.PubMedPubMedCentralCrossRef
136.
137.
go back to reference Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model. PLoS ONE. 2015;10(10):e0139416.PubMedPubMedCentralCrossRef Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model. PLoS ONE. 2015;10(10):e0139416.PubMedPubMedCentralCrossRef
138.
140.
141.
142.
go back to reference Hertz NT, Berthet A, Sos ML, et al. A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1. Cell. 2013;154(4):737–47.PubMedPubMedCentralCrossRef Hertz NT, Berthet A, Sos ML, et al. A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1. Cell. 2013;154(4):737–47.PubMedPubMedCentralCrossRef
144.
go back to reference Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.PubMedCrossRef Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.PubMedCrossRef
145.
go back to reference Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. 2014;56(3):360–75.PubMedPubMedCentralCrossRef Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. 2014;56(3):360–75.PubMedPubMedCentralCrossRef
146.
go back to reference Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2019;1866(4):575–87.CrossRef Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival. Biochimica et Biophysica Acta (BBA)-Molecular Cell Res. 2019;1866(4):575–87.CrossRef
147.
go back to reference Wei Y, Chiang WC, Sumpter R, et al. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168(1–2):224-38.e10.PubMedCrossRef Wei Y, Chiang WC, Sumpter R, et al. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168(1–2):224-38.e10.PubMedCrossRef
148.
go back to reference Yun J, Puri R, Yang H, et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife. 2014;3:e01958.PubMedPubMedCentralCrossRef Yun J, Puri R, Yang H, et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife. 2014;3:e01958.PubMedPubMedCentralCrossRef
149.
go back to reference Cadete VJ, Vasam G, Menzies KJ, Burelle Y. 2019 Mitochondrial quality control in the cardiac system An integrative view. Biochimica et Biophysica Acta (BBA)-Molecular Basis Disease. 1865;4:782–96. Cadete VJ, Vasam G, Menzies KJ, Burelle Y. 2019 Mitochondrial quality control in the cardiac system An integrative view. Biochimica et Biophysica Acta (BBA)-Molecular Basis Disease. 1865;4:782–96.
150.
go back to reference Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–85.PubMedCrossRef Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–85.PubMedCrossRef
151.
152.
go back to reference Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16(7):939–46.PubMedCrossRef Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16(7):939–46.PubMedCrossRef
153.
go back to reference Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.ADSPubMedCrossRef Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6:7527.ADSPubMedCrossRef
154.
go back to reference Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. 2013;15(10):1197–205.PubMedPubMedCentralCrossRef Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. 2013;15(10):1197–205.PubMedPubMedCentralCrossRef
155.
go back to reference Zhang E, Zhao X, Zhang L, et al. Minocycline promotes cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy to prevent sepsis-induced cardiac dysfunction by Akt/mTOR signaling. Apoptosis. 2019;24(3):369–81.PubMedCrossRef Zhang E, Zhao X, Zhang L, et al. Minocycline promotes cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy to prevent sepsis-induced cardiac dysfunction by Akt/mTOR signaling. Apoptosis. 2019;24(3):369–81.PubMedCrossRef
156.
go back to reference Cao Y, Han X, Pan H, et al. Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis. Inflamm Res. 2020;69(1):41–50.PubMedCrossRef Cao Y, Han X, Pan H, et al. Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis. Inflamm Res. 2020;69(1):41–50.PubMedCrossRef
157.
158.
go back to reference Wang S, Zhao Z, Feng X, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018;22(10):5132–44.PubMedPubMedCentralCrossRef Wang S, Zhao Z, Feng X, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018;22(10):5132–44.PubMedPubMedCentralCrossRef
159.
go back to reference Hsieh C-H, Pai P-Y, Hsueh H-W, Yuan S-S, Hsieh Y-C. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 2011;253(6):1190–200.PubMedCrossRef Hsieh C-H, Pai P-Y, Hsueh H-W, Yuan S-S, Hsieh Y-C. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 2011;253(6):1190–200.PubMedCrossRef
160.
go back to reference Jiang X, Cai S, Jin Y, et al. Irisin Attenuates Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in the H9C2 Cellular Model of Septic Cardiomyopathy through Augmenting Fundc1-Dependent Mitophagy. Oxidative Medicine and Cellular Longevity. 2021;2021. Jiang X, Cai S, Jin Y, et al. Irisin Attenuates Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in the H9C2 Cellular Model of Septic Cardiomyopathy through Augmenting Fundc1-Dependent Mitophagy. Oxidative Medicine and Cellular Longevity. 2021;2021.
161.
go back to reference Bian X, Teng T, Zhao H, et al. Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radical Res. 2018;52(1):80–91.CrossRef Bian X, Teng T, Zhao H, et al. Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radical Res. 2018;52(1):80–91.CrossRef
162.
go back to reference Jang S-y, Kang HT, Hwang ES. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biological Chemistry. 2012;287(23):19304–14.CrossRef Jang S-y, Kang HT, Hwang ES. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biological Chemistry. 2012;287(23):19304–14.CrossRef
163.
go back to reference Ji W, Wan T, Zhang F, et al. Aldehyde Dehydrogenase 2 Protects Against Lipopolysaccharide-Induced Myocardial Injury by Suppressing Mitophagy. Front Pharmacol. 2021;12:1025.CrossRef Ji W, Wan T, Zhang F, et al. Aldehyde Dehydrogenase 2 Protects Against Lipopolysaccharide-Induced Myocardial Injury by Suppressing Mitophagy. Front Pharmacol. 2021;12:1025.CrossRef
164.
go back to reference Roshanravan B, Liu SZ, Ali AS, et al. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS ONE. 2021;16(7):e0253849.PubMedPubMedCentralCrossRef Roshanravan B, Liu SZ, Ali AS, et al. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS ONE. 2021;16(7):e0253849.PubMedPubMedCentralCrossRef
165.
go back to reference Hortmann M, Robinson S, Mohr M, et al. The mitochondria-targeting peptide elamipretide diminishes circulating HtrA2 in ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2019;8(8):695–702.PubMedCrossRef Hortmann M, Robinson S, Mohr M, et al. The mitochondria-targeting peptide elamipretide diminishes circulating HtrA2 in ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2019;8(8):695–702.PubMedCrossRef
166.
go back to reference Daubert MA, Yow E, Dunn G, et al. Novel mitochondria-targeting peptide in heart failure treatment a randomized, placebo-controlled trial of elamipretide. Circ Heart Failure. 2017;10(12):e004389.PubMedCrossRef Daubert MA, Yow E, Dunn G, et al. Novel mitochondria-targeting peptide in heart failure treatment a randomized, placebo-controlled trial of elamipretide. Circ Heart Failure. 2017;10(12):e004389.PubMedCrossRef
167.
go back to reference Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMedCrossRef Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMedCrossRef
168.
go back to reference Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.PubMedCrossRef Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.PubMedCrossRef
169.
go back to reference Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.PubMedCrossRef Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.PubMedCrossRef
170.
go back to reference Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151(6):1229–38.PubMedCrossRef Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151(6):1229–38.PubMedCrossRef
171.
go back to reference Antcliffe DB, Santhakumaran S, Orme RML, et al. Levosimendan in septic shock in patients with biochemical evidence of cardiac dysfunction: a subgroup analysis of the LeoPARDS randomised trial. Intensive Care Med. 2019;45(10):1392–400.PubMedCrossRef Antcliffe DB, Santhakumaran S, Orme RML, et al. Levosimendan in septic shock in patients with biochemical evidence of cardiac dysfunction: a subgroup analysis of the LeoPARDS randomised trial. Intensive Care Med. 2019;45(10):1392–400.PubMedCrossRef
172.
go back to reference Kim WY, Baek MS, Kim YS, et al. Glucose-insulin-potassium correlates with hemodynamic improvement in patients with septic myocardial dysfunction. J Thorac Dis. 2016;8(12):3648–57.PubMedPubMedCentralCrossRef Kim WY, Baek MS, Kim YS, et al. Glucose-insulin-potassium correlates with hemodynamic improvement in patients with septic myocardial dysfunction. J Thorac Dis. 2016;8(12):3648–57.PubMedPubMedCentralCrossRef
173.
go back to reference Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39(8):1435–43.PubMedCrossRef Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39(8):1435–43.PubMedCrossRef
174.
go back to reference Kopterides P, Falagas M. Statins for sepsis: a critical and updated review. Clin Microbiol Infect. 2009;15(4):325–34.PubMedCrossRef Kopterides P, Falagas M. Statins for sepsis: a critical and updated review. Clin Microbiol Infect. 2009;15(4):325–34.PubMedCrossRef
Metadata
Title
Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy
Authors
Oluwabukunmi Modupe Salami
Olive Habimana
Jin-fu Peng
Guang-Hui Yi
Publication date
15-06-2022
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2024
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07354-8

Other articles of this Issue 1/2024

Cardiovascular Drugs and Therapy 1/2024 Go to the issue