Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2024

29-09-2022 | Dapagliflozin | Original Article

The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding

Authors: Kim A. Connelly, Ellen Wu, Aylin Visram, Mark K. Friedberg, Sri Nagarjun Batchu, Veera Ganesh Yerra, Kerri Thai, Linda Nghiem, Yanling Zhang, Golam Kabir, J. F. Desjardins, Andrew Advani, Richard E. Gilbert

Published in: Cardiovascular Drugs and Therapy | Issue 1/2024

Login to get access

Abstract

Background

Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored.

Hypothesis

We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle.

Methods

Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses.

Results

PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05).

Significance

Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.
Literature
2.
go back to reference Gavazzoni M, Badano LP, Vizzardi E, Raddino R, Genovese D, Taramasso M, et al. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. European Hear J Cardiovasc Imaging. 2020;21:1013–21.CrossRef Gavazzoni M, Badano LP, Vizzardi E, Raddino R, Genovese D, Taramasso M, et al. Prognostic value of right ventricular free wall longitudinal strain in a large cohort of outpatients with left-side heart disease. European Hear J Cardiovasc Imaging. 2020;21:1013–21.CrossRef
3.
go back to reference Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald R, Hickey K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Circulation. 2018;138:2106–15.CrossRefPubMed Geva T, Mulder B, Gauvreau K, Babu-Narayan SV, Wald R, Hickey K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Circulation. 2018;138:2106–15.CrossRefPubMed
4.
go back to reference Surkova E, Muraru D, Genovese D, Aruta P, Palermo C, Badano LP. Relative prognostic importance of left and right ventricular ejection fraction in patients with cardiac diseases. J Am Soc Echocardiog. 2019;32:1407-1415.e3.CrossRef Surkova E, Muraru D, Genovese D, Aruta P, Palermo C, Badano LP. Relative prognostic importance of left and right ventricular ejection fraction in patients with cardiac diseases. J Am Soc Echocardiog. 2019;32:1407-1415.e3.CrossRef
6.
go back to reference Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: Part 2 of 2. Circulation. 2013;128:1021–30.CrossRefPubMed Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: Part 2 of 2. Circulation. 2013;128:1021–30.CrossRefPubMed
7.
go back to reference Friedberg MK, Redington AN. Right versus left ventricular failure. Circulation. 2014;129:1033–44.CrossRefPubMed Friedberg MK, Redington AN. Right versus left ventricular failure. Circulation. 2014;129:1033–44.CrossRefPubMed
10.
go back to reference Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.CrossRefPubMed Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.CrossRefPubMed
11.
go back to reference Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.CrossRefPubMed Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120:1951–60.CrossRefPubMed
12.
go back to reference Noordegraaf AV, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.CrossRef Noordegraaf AV, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.CrossRef
13.
go back to reference Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D22-33.CrossRefPubMed Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D22-33.CrossRefPubMed
14.
go back to reference Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2019;380:347–57.CrossRefPubMed Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New Engl J Med. 2019;380:347–57.CrossRefPubMed
15.
go back to reference McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New Engl J Med. 2019;381:1995–2008.CrossRefPubMed McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New Engl J Med. 2019;381:1995–2008.CrossRefPubMed
17.
go back to reference Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2019;140:1693–702.CrossRefPubMed Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2019;140:1693–702.CrossRefPubMed
18.
go back to reference Opingari E, Verma S, Connelly KA, Mazer CD, Teoh H, Quan A, et al. The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes CardioLink-6 trial. Nephrol Dial Transpl. 2020;35:895–7.CrossRef Opingari E, Verma S, Connelly KA, Mazer CD, Teoh H, Quan A, et al. The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes CardioLink-6 trial. Nephrol Dial Transpl. 2020;35:895–7.CrossRef
19.
go back to reference Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol. 2020;129:238–46.CrossRefPubMed Akazawa Y, Okumura K, Ishii R, Slorach C, Hui W, Ide H, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol. 2020;129:238–46.CrossRefPubMed
20.
go back to reference Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice. Hypertension. 2012;59:1170–8.CrossRefPubMed Chen Y, Guo H, Xu D, Xu X, Wang H, Hu X, et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice. Hypertension. 2012;59:1170–8.CrossRefPubMed
21.
go back to reference Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, et al. Experimental right ventricular hypertension induces regional β1‐integrin–mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J Am Heart Assoc. 2018;7(7):e007928. https://doi.org/10.1161/JAHA.117.007928 Sun M, Ishii R, Okumura K, Krauszman A, Breitling S, Gomez O, et al. Experimental right ventricular hypertension induces regional β1‐integrin–mediated transduction of hypertrophic and profibrotic right and left ventricular signaling. J Am Heart Assoc. 2018;7(7):e007928. https://​doi.​org/​10.​1161/​JAHA.​117.​007928
22.
go back to reference Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am J Resp Cell Mol. 2020;63:843–55.CrossRef Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am J Resp Cell Mol. 2020;63:843–55.CrossRef
23.
go back to reference Borgdorff MAJ, Koop AMC, Bloks VW, Dickinson MG, Steendijk P, Sillje HHW, et al. Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol. 2015;79:244–53.CrossRefPubMed Borgdorff MAJ, Koop AMC, Bloks VW, Dickinson MG, Steendijk P, Sillje HHW, et al. Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol. 2015;79:244–53.CrossRefPubMed
24.
go back to reference Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.CrossRefPubMed Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.CrossRefPubMed
25.
go back to reference Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Bioph Res Co. 2020;524:50–6.CrossRef Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Bioph Res Co. 2020;524:50–6.CrossRef
26.
go back to reference Connelly KA, Zhang Y, Visram A, Advani A, Batchu SN, Desjardins J-F, et al. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. Jacc Basic Transl Sci. 2019;4:27–37.CrossRefPubMedPubMedCentral Connelly KA, Zhang Y, Visram A, Advani A, Batchu SN, Desjardins J-F, et al. Empagliflozin improves diastolic function in a nondiabetic rodent model of heart failure with preserved ejection fraction. Jacc Basic Transl Sci. 2019;4:27–37.CrossRefPubMedPubMedCentral
27.
go back to reference Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.CrossRefPubMed Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–14.CrossRefPubMed
28.
go back to reference Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.CrossRefPubMed Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.CrossRefPubMed
29.
go back to reference Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62.CrossRefPubMedPubMedCentral Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62.CrossRefPubMedPubMedCentral
30.
go back to reference Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2019;141:704–7.CrossRefPubMed Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2019;141:704–7.CrossRefPubMed
31.
go back to reference Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020;142:1028–39.CrossRefPubMedPubMedCentral Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in heart failure: diuretic and cardiorenal effects. Circulation. 2020;142:1028–39.CrossRefPubMedPubMedCentral
32.
go back to reference Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2019;24:904–11.CrossRefPubMed Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2019;24:904–11.CrossRefPubMed
33.
go back to reference Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2013;35:657–64.CrossRefPubMedPubMedCentral Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2013;35:657–64.CrossRefPubMedPubMedCentral
34.
go back to reference Coelho-Filho OR, Mitchell RN, Moreno H, Kwong R, Jerosch-Herold M. MRI based non-invasive detection of cardiomyocyte hypertrophy and cell-volume changes. J Cardiov Magn Reson. 2012;14:O10.CrossRef Coelho-Filho OR, Mitchell RN, Moreno H, Kwong R, Jerosch-Herold M. MRI based non-invasive detection of cardiomyocyte hypertrophy and cell-volume changes. J Cardiov Magn Reson. 2012;14:O10.CrossRef
35.
go back to reference Yamamura K, Yuen D, Hickey EJ, He X, Chaturvedi RR, Friedberg MK, et al. Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart. 2019;105:855.CrossRefPubMed Yamamura K, Yuen D, Hickey EJ, He X, Chaturvedi RR, Friedberg MK, et al. Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart. 2019;105:855.CrossRefPubMed
36.
go back to reference Yamamura K, Yuen D, Hickey E, Chaturvedi R, Friedberg M, Wald R. Histological Quantification of right ventricular myocardial fibrosis and its impact on right ventricular reverse remodeling in adult patients with repaired Tetralogy of Fallot. J Am Coll Cardiol. 2018;71:A555.CrossRef Yamamura K, Yuen D, Hickey E, Chaturvedi R, Friedberg M, Wald R. Histological Quantification of right ventricular myocardial fibrosis and its impact on right ventricular reverse remodeling in adult patients with repaired Tetralogy of Fallot. J Am Coll Cardiol. 2018;71:A555.CrossRef
Metadata
Title
The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding
Authors
Kim A. Connelly
Ellen Wu
Aylin Visram
Mark K. Friedberg
Sri Nagarjun Batchu
Veera Ganesh Yerra
Kerri Thai
Linda Nghiem
Yanling Zhang
Golam Kabir
J. F. Desjardins
Andrew Advani
Richard E. Gilbert
Publication date
29-09-2022
Publisher
Springer US
Keyword
Dapagliflozin
Published in
Cardiovascular Drugs and Therapy / Issue 1/2024
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07377-1

Other articles of this Issue 1/2024

Cardiovascular Drugs and Therapy 1/2024 Go to the issue