Skip to main content
Top
Published in: Netherlands Heart Journal 6/2019

Open Access 01-06-2019 | Cardiomyopathy | Original Article

Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance

Authors: F. H. M. van Lint, O. R. F. Mook, M. Alders, H. Bikker, R. H. Lekanne dit Deprez, I. Christiaans

Published in: Netherlands Heart Journal | Issue 6/2019

Login to get access

Abstract

Background

Genetic heterogeneity is common in inherited cardiac diseases. Next-generation sequencing gene panels are therefore suitable for genetic diagnosis. We describe the results of implementation of cardiomyopathy and arrhythmia gene panels in clinical care.

Methods

We present detection rates for variants with unknown (class 3), likely (class 4), and certain (class 5) pathogenicity in cardiogenetic gene panels since their introduction into diagnostics.

Results

In 936 patients tested on the arrhythmia panel, likely pathogenic and pathogenic variants were detected in 8.8% (4.6% class 5; 4.2% class 4), and one or multiple class 3 variants in 34.8%. In 1970 patients tested on the cardiomyopathy panel, likely pathogenic and pathogenic variants were detected in 19.8% (12.0% class 5; 7.9% class 4), and one or multiple class 3 variants in 40.8%. Detection rates of all different classes of variants increased with the increasing number of genes on the cardiomyopathy gene panel. Multiple variants were detected in 11.7% and 28.5% of patients on the arrhythmia and cardiomyopathy panels respectively. In more recent larger versions of the cardiomyopathy gene panel the detection rate of likely pathogenic and pathogenic variants only slightly increased, but was associated with a large increase of class 3 variants.

Conclusion

Overall detection rates (class 3, 4, and 5 variants) in a diagnostic setting are 44% and 61% for the arrhythmia and cardiomyopathy gene panel respectively, with only a small minority of likely pathogenic and pathogenic variants (8.8% and 19.8% respectively). Larger gene panels can increase the detection rate of likely pathogenic and pathogenic variants, but mainly increase the frequency of variants of unknown pathogenicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mogensen J, van Tintelen JP, Fokstuen S, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J. 2015;36:1367–70.CrossRef Mogensen J, van Tintelen JP, Fokstuen S, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J. 2015;36:1367–70.CrossRef
2.
go back to reference Mook OR, Haagmans MA, Soucy JF, et al. Targeted sequence capture and GS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. J Med Genet. 2013;50:614–26.CrossRef Mook OR, Haagmans MA, Soucy JF, et al. Targeted sequence capture and GS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. J Med Genet. 2013;50:614–26.CrossRef
3.
go back to reference Matthijs G, Souche E, Alders M, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24:2–5.CrossRef Matthijs G, Souche E, Alders M, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24:2–5.CrossRef
4.
go back to reference Nishio Y, Makiyama T, Itoh H, et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol. 2009;54:812–9.CrossRef Nishio Y, Makiyama T, Itoh H, et al. D85N, a KCNE1 polymorphism, is a disease-causing gene variant in long QT syndrome. J Am Coll Cardiol. 2009;54:812–9.CrossRef
5.
go back to reference Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.CrossRef Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.CrossRef
6.
go back to reference Bai R, Napolitano C, Bloise R, Monteforte N, Priori SG. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ Arrhythm Electrophysiol. 2009;2:6–15.CrossRef Bai R, Napolitano C, Bloise R, Monteforte N, Priori SG. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ Arrhythm Electrophysiol. 2009;2:6–15.CrossRef
7.
go back to reference Crotti L, Marcou CA, Tester DJ, et al. Spectrum and prevalence of mutations involving BrS1-through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol. 2012;60:1410–8.CrossRef Crotti L, Marcou CA, Tester DJ, et al. Spectrum and prevalence of mutations involving BrS1-through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol. 2012;60:1410–8.CrossRef
8.
go back to reference Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc. 2005;80:739–44.CrossRef Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc. 2005;80:739–44.CrossRef
9.
go back to reference van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP, et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur J Heart Fail. 2013;15:628–36.CrossRef van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP, et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years’ experience. Eur J Heart Fail. 2013;15:628–36.CrossRef
10.
go back to reference Alfares AA, Kelly MA, McDermott G, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880–8.CrossRef Alfares AA, Kelly MA, McDermott G, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880–8.CrossRef
11.
go back to reference Pugh TJ, Kelly MA, Gowrisankar S, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16:601–8.CrossRef Pugh TJ, Kelly MA, Gowrisankar S, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16:601–8.CrossRef
12.
go back to reference Le Scouarnec S, Karakachoff M, Gourraud JB, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet. 2015;24:2757–63.CrossRef Le Scouarnec S, Karakachoff M, Gourraud JB, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet. 2015;24:2757–63.CrossRef
13.
go back to reference Hofman N, Tan HL, Alders M, et al. Yield of molecular and clinical testing for arrhythmia syndromes: report of 15 years’ experience. Circulation. 2013;128:1513–21.CrossRef Hofman N, Tan HL, Alders M, et al. Yield of molecular and clinical testing for arrhythmia syndromes: report of 15 years’ experience. Circulation. 2013;128:1513–21.CrossRef
14.
go back to reference Ingles J, Sarina T, Yeates L, et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med. 2013;15:972–7.CrossRef Ingles J, Sarina T, Yeates L, et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med. 2013;15:972–7.CrossRef
15.
go back to reference Lubitz SA, Ellinor PT. Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm. 2015;12:1062–70.CrossRef Lubitz SA, Ellinor PT. Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm. 2015;12:1062–70.CrossRef
16.
go back to reference Haas J, Frese KS, Peil B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36:1123–35a.CrossRef Haas J, Frese KS, Peil B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36:1123–35a.CrossRef
17.
go back to reference Lodder EM, Bezzina CR. Arrhythmogenic right ventricular cardiomyopathy: growing evidence for complex inheritance. Circ Cardiovasc Genet. 2013;6:525–7.CrossRef Lodder EM, Bezzina CR. Arrhythmogenic right ventricular cardiomyopathy: growing evidence for complex inheritance. Circ Cardiovasc Genet. 2013;6:525–7.CrossRef
18.
go back to reference Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6:533–42.CrossRef Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6:533–42.CrossRef
19.
go back to reference Wessels MW, Herkert JC, Frohn-Mulder IM, et al. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet. 2015;23:922–8.CrossRef Wessels MW, Herkert JC, Frohn-Mulder IM, et al. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur J Hum Genet. 2015;23:922–8.CrossRef
Metadata
Title
Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance
Authors
F. H. M. van Lint
O. R. F. Mook
M. Alders
H. Bikker
R. H. Lekanne dit Deprez
I. Christiaans
Publication date
01-06-2019
Publisher
Bohn Stafleu van Loghum
Keyword
Cardiomyopathy
Published in
Netherlands Heart Journal / Issue 6/2019
Print ISSN: 1568-5888
Electronic ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-019-1250-5

Other articles of this Issue 6/2019

Netherlands Heart Journal 6/2019 Go to the issue