Skip to main content
Top
Published in: Cardiovascular Toxicology 5-6/2023

29-04-2023 | Cardiomyopathy

Intermittent Hypoxic Preconditioning Plays a Cardioprotective Role in Doxorubicin-Induced Cardiomyopathy

Authors: Peter Galis, Linda Bartosova, Veronika Farkasova, Adrian Szobi, Csaba Horvath, Dominika Kovacova, Adriana Adameova, Tomas Rajtik

Published in: Cardiovascular Toxicology | Issue 5-6/2023

Login to get access

Abstract

Intermittent hypoxic preconditioning (IHP) is a well-established cardioprotective intervention in models of ischemia/reperfusion injury. Nevertheless, the significance of IHP in different cardiac pathologies remains elusive. In order to investigate the role of IHP and its effects on calcium-dependent signalization in HF, we employed a model of cardiomyopathy induced by doxorubicin (Dox), a widely used drug from the class of cardiotoxic antineoplastics, which was i.p. injected to Wistar rats (4 applications of 4 mg/kg/week). IHP-treated group was exposed to IHP for 2 weeks prior to Dox administration. IHP ameliorated Dox-induced reduction in cardiac output. Western blot analysis revealed increased expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) while the expression of hypoxia inducible factor (HIF)-1-α, which is a crucial regulator of hypoxia-inducible genes, was not changed. Animals administered with Dox had further decreased expression of TRPV1 and TRPV4 (transient receptor potential, vanilloid subtype) ion channels along with suppressed Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. In summary, IHP-mediated improvement in cardiac output in the model of Dox-induced cardiomyopathy is likely a result of increased SERCA2a expression which could implicate IHP as a potential protective intervention in Dox cardiomyopathy, however, further analysis of observed effects is still required.
Literature
5.
go back to reference Shevchuk, O. O., Posokhova, E. A., Sakhno, L. A., & Nikolaev, V. G. (2012). Theoretical ground for adsorptive therapy of anthracyclines cardiotoxicity. Experimental Oncology, 34(4), 314–322.PubMed Shevchuk, O. O., Posokhova, E. A., Sakhno, L. A., & Nikolaev, V. G. (2012). Theoretical ground for adsorptive therapy of anthracyclines cardiotoxicity. Experimental Oncology, 34(4), 314–322.PubMed
8.
go back to reference Llach, A., Mazevet, M., Mateo, P., Villejouvert, O., Ridoux, A., Rucker-Martin, C., Ribeiro, M., Fischmeister, R., Crozatier, B., Benitah, J. P., Morel, E., & Gómez, A. M. (2019). Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 126, 129–139. https://doi.org/10.1016/j.yjmcc.2018.11.019CrossRefPubMed Llach, A., Mazevet, M., Mateo, P., Villejouvert, O., Ridoux, A., Rucker-Martin, C., Ribeiro, M., Fischmeister, R., Crozatier, B., Benitah, J. P., Morel, E., & Gómez, A. M. (2019). Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 126, 129–139. https://​doi.​org/​10.​1016/​j.​yjmcc.​2018.​11.​019CrossRefPubMed
12.
23.
go back to reference Chiusa, M., Hool, S. L., Truetsch, P., Djafarzadeh, S., Jakob, S. M., Seifriz, F., Scherer, S. J., Suter, T. M., Zuppinger, C., & Zbinden, S. (2012). Cancer therapy modulates VEGF signaling and viability in adult rat cardiac microvascular endothelial cells and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52(5), 1164–1175. https://doi.org/10.1016/j.yjmcc.2012.01.022CrossRefPubMed Chiusa, M., Hool, S. L., Truetsch, P., Djafarzadeh, S., Jakob, S. M., Seifriz, F., Scherer, S. J., Suter, T. M., Zuppinger, C., & Zbinden, S. (2012). Cancer therapy modulates VEGF signaling and viability in adult rat cardiac microvascular endothelial cells and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 52(5), 1164–1175. https://​doi.​org/​10.​1016/​j.​yjmcc.​2012.​01.​022CrossRefPubMed
24.
go back to reference Huang, Y., Hickey, R. P., Yeh, J. L., Liu, D., Dadak, A., Young, L. H., Johnson, R. S., & Giordano, F. J. (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 18(10), 1138–1140. https://doi.org/10.1096/fj.04-1510fjeCrossRefPubMed Huang, Y., Hickey, R. P., Yeh, J. L., Liu, D., Dadak, A., Young, L. H., Johnson, R. S., & Giordano, F. J. (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 18(10), 1138–1140. https://​doi.​org/​10.​1096/​fj.​04-1510fjeCrossRefPubMed
25.
go back to reference Silter, M., Kögler, H., Zieseniss, A., Wilting, J., Schäfer, K., Toischer, K., Rokita, A. G., Breves, G., Maier, L. S., & Katschinski, D. M. (2010). Impaired Ca(2+)-handling in HIF-1alpha(+/-) mice as a consequence of pressure overload. Pflugers Archiv : European Journal of Physiology, 459(4), 569–577. https://doi.org/10.1007/s00424-009-0748-xCrossRefPubMed Silter, M., Kögler, H., Zieseniss, A., Wilting, J., Schäfer, K., Toischer, K., Rokita, A. G., Breves, G., Maier, L. S., & Katschinski, D. M. (2010). Impaired Ca(2+)-handling in HIF-1alpha(+/-) mice as a consequence of pressure overload. Pflugers Archiv : European Journal of Physiology, 459(4), 569–577. https://​doi.​org/​10.​1007/​s00424-009-0748-xCrossRefPubMed
26.
go back to reference Rath, G., Saliez, J., Behets, G., Romero-Perez, M., Leon-Gomez, E., Bouzin, C., Vriens, J., Nilius, B., Feron, O., & Dessy, C. (2012). Vascular hypoxic preconditioning relies on TRPV4-dependent calcium influx and proper intercellular gap junctions communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2241–2249. https://doi.org/10.1161/ATVBAHA.112.252783CrossRefPubMed Rath, G., Saliez, J., Behets, G., Romero-Perez, M., Leon-Gomez, E., Bouzin, C., Vriens, J., Nilius, B., Feron, O., & Dessy, C. (2012). Vascular hypoxic preconditioning relies on TRPV4-dependent calcium influx and proper intercellular gap junctions communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2241–2249. https://​doi.​org/​10.​1161/​ATVBAHA.​112.​252783CrossRefPubMed
29.
32.
go back to reference Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987–993. https://doi.org/10.1111/bph.14153CrossRefPubMedPubMedCentral Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987–993. https://​doi.​org/​10.​1111/​bph.​14153CrossRefPubMedPubMedCentral
34.
go back to reference Chang, H. H., Hsu, S. P., & Chien, C. T. (2019). Intrarenal transplantation of hypoxic preconditioned mesenchymal stem cells improves glomerulonephritis through anti-oxidation, anti-ER stress, anti-inflammation, anti-apoptosis, and anti-autophagy. Antioxidants (Basel, Switzerland), 9(1), 2. https://doi.org/10.3390/antiox9010002CrossRefPubMed Chang, H. H., Hsu, S. P., & Chien, C. T. (2019). Intrarenal transplantation of hypoxic preconditioned mesenchymal stem cells improves glomerulonephritis through anti-oxidation, anti-ER stress, anti-inflammation, anti-apoptosis, and anti-autophagy. Antioxidants (Basel, Switzerland), 9(1), 2. https://​doi.​org/​10.​3390/​antiox9010002CrossRefPubMed
36.
go back to reference Zhong, N., Zhang, Y., Zhu, H. F., & Zhou, Z. N. (2000). Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng li xue bao: Acta physiologica Sinica, 52(5), 375–380.PubMed Zhong, N., Zhang, Y., Zhu, H. F., & Zhou, Z. N. (2000). Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng li xue bao: Acta physiologica Sinica, 52(5), 375–380.PubMed
42.
go back to reference Simůnek, T., Sterba, M., Holecková, M., Kaplanová, J., Klimtová, I., Adamcová, M., Gersl, V., & Hrdina, R. (2005). Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 18(2), 163–169. https://doi.org/10.1007/s10534-004-4491-7CrossRefPubMed Simůnek, T., Sterba, M., Holecková, M., Kaplanová, J., Klimtová, I., Adamcová, M., Gersl, V., & Hrdina, R. (2005). Myocardial content of selected elements in experimental anthracycline-induced cardiomyopathy in rabbits. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 18(2), 163–169. https://​doi.​org/​10.​1007/​s10534-004-4491-7CrossRefPubMed
44.
go back to reference Ji, Y., Lalli, M. J., Babu, G. J., Xu, Y., Kirkpatrick, D. L., Liu, L. H., Chiamvimonvat, N., Walsh, R. A., Shull, G. E., & Periasamy, M. (2000). Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. The Journal of Biological Chemistry, 275(48), 38073–38080. https://doi.org/10.1074/jbc.M004804200CrossRefPubMed Ji, Y., Lalli, M. J., Babu, G. J., Xu, Y., Kirkpatrick, D. L., Liu, L. H., Chiamvimonvat, N., Walsh, R. A., Shull, G. E., & Periasamy, M. (2000). Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. The Journal of Biological Chemistry, 275(48), 38073–38080. https://​doi.​org/​10.​1074/​jbc.​M004804200CrossRefPubMed
45.
go back to reference Ezzitouny, M., Roselló-Lletí, E., Portolés, M., Sánchez-Lázaro, I., Arnau-Vives, M. Á., Tarazón, E., Gil-Cayuela, C., Lozano-Edo, S., López-Vilella, R., Almenar-Bonet, L., & Martínez-Dolz, L. (2021). Value of SERCA2a as a biomarker for the identification of patients with heart failure requiring circulatory support. Journal of Personalized Medicine, 11(11), 1122. https://doi.org/10.3390/jpm11111122CrossRefPubMedPubMedCentral Ezzitouny, M., Roselló-Lletí, E., Portolés, M., Sánchez-Lázaro, I., Arnau-Vives, M. Á., Tarazón, E., Gil-Cayuela, C., Lozano-Edo, S., López-Vilella, R., Almenar-Bonet, L., & Martínez-Dolz, L. (2021). Value of SERCA2a as a biomarker for the identification of patients with heart failure requiring circulatory support. Journal of Personalized Medicine, 11(11), 1122. https://​doi.​org/​10.​3390/​jpm11111122CrossRefPubMedPubMedCentral
52.
go back to reference Wu, X. D., Zhang, Z. Y., Sun, S., Li, Y. Z., Wang, X. R., Zhu, X. Q., Li, W. H., & Liu, X. H. (2013). Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress. Apoptosis : An International Journal on Programmed Cell Death, 18(1), 85–98. https://doi.org/10.1007/s10495-012-0766-6CrossRefPubMed Wu, X. D., Zhang, Z. Y., Sun, S., Li, Y. Z., Wang, X. R., Zhu, X. Q., Li, W. H., & Liu, X. H. (2013). Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress. Apoptosis : An International Journal on Programmed Cell Death, 18(1), 85–98. https://​doi.​org/​10.​1007/​s10495-012-0766-6CrossRefPubMed
57.
go back to reference Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., Liu, Y., Zheng, W., Shang, H., Zhang, J., Zhang, M., Wu, H., Guo, J., Zhang, X., Hu, X., Cao, C. M., & Xiao, R. P. (2016). CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nature Medicine, 22(2), 175–182. https://doi.org/10.1038/nm.4017CrossRefPubMed Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., Liu, Y., Zheng, W., Shang, H., Zhang, J., Zhang, M., Wu, H., Guo, J., Zhang, X., Hu, X., Cao, C. M., & Xiao, R. P. (2016). CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nature Medicine, 22(2), 175–182. https://​doi.​org/​10.​1038/​nm.​4017CrossRefPubMed
58.
60.
go back to reference Koncsos, G., Varga, Z. V., Baranyai, T., Boengler, K., Rohrbach, S., Li, L., Schlüter, K. D., Schreckenberg, R., Radovits, T., Oláh, A., Mátyás, C., Lux, Á., Al-Khrasani, M., Komlódi, T., Bukosza, N., Máthé, D., Deres, L., Barteková, M., Rajtík, T., Adameová, A., … Ferdinandy, P. (2016). Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. American journal of physiology. Heart and circulatory physiology, 311(4), H927–H943. https://doi.org/10.1152/ajpheart.00049.2016. Koncsos, G., Varga, Z. V., Baranyai, T., Boengler, K., Rohrbach, S., Li, L., Schlüter, K. D., Schreckenberg, R., Radovits, T., Oláh, A., Mátyás, C., Lux, Á., Al-Khrasani, M., Komlódi, T., Bukosza, N., Máthé, D., Deres, L., Barteková, M., Rajtík, T., Adameová, A., … Ferdinandy, P. (2016). Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. American journal of physiology. Heart and circulatory physiology, 311(4), H927–H943. https://​doi.​org/​10.​1152/​ajpheart.​00049.​2016.​
61.
go back to reference Woolums, B. M., McCray, B. A., Sung, H., Tabuchi, M., Sullivan, J. M., Ruppell, K. T., Yang, Y., Mamah, C., Aisenberg, W. H., Saavedra-Rivera, P. C., Larin, B. S., Lau, A. R., Robinson, D. N., Xiang, Y., Wu, M. N., Sumner, C. J., & Lloyd, T. E. (2020). TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2. Nature Communications, 11(1), 2679. https://doi.org/10.1038/s41467-020-16411-5CrossRefPubMedPubMedCentral Woolums, B. M., McCray, B. A., Sung, H., Tabuchi, M., Sullivan, J. M., Ruppell, K. T., Yang, Y., Mamah, C., Aisenberg, W. H., Saavedra-Rivera, P. C., Larin, B. S., Lau, A. R., Robinson, D. N., Xiang, Y., Wu, M. N., Sumner, C. J., & Lloyd, T. E. (2020). TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2. Nature Communications, 11(1), 2679. https://​doi.​org/​10.​1038/​s41467-020-16411-5CrossRefPubMedPubMedCentral
62.
66.
go back to reference Zhang, Q., Qi, H., Cao, Y., Shi, P., Song, C., Ba, L., Chen, Y., Gao, J., Li, S., Li, B., & Sun, H. (2018). Activation of transient receptor potential vanilloid 3 channel (TRPV3) aggravated pathological cardiac hypertrophy via calcineurin/NFATc3 pathway in rats. Journal of Cellular and Molecular Medicine, 22(12), 6055–6067. https://doi.org/10.1111/jcmm.13880CrossRefPubMedPubMedCentral Zhang, Q., Qi, H., Cao, Y., Shi, P., Song, C., Ba, L., Chen, Y., Gao, J., Li, S., Li, B., & Sun, H. (2018). Activation of transient receptor potential vanilloid 3 channel (TRPV3) aggravated pathological cardiac hypertrophy via calcineurin/NFATc3 pathway in rats. Journal of Cellular and Molecular Medicine, 22(12), 6055–6067. https://​doi.​org/​10.​1111/​jcmm.​13880CrossRefPubMedPubMedCentral
Metadata
Title
Intermittent Hypoxic Preconditioning Plays a Cardioprotective Role in Doxorubicin-Induced Cardiomyopathy
Authors
Peter Galis
Linda Bartosova
Veronika Farkasova
Adrian Szobi
Csaba Horvath
Dominika Kovacova
Adriana Adameova
Tomas Rajtik
Publication date
29-04-2023
Publisher
Springer US
Keyword
Cardiomyopathy
Published in
Cardiovascular Toxicology / Issue 5-6/2023
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-023-09793-7

Other articles of this Issue 5-6/2023

Cardiovascular Toxicology 5-6/2023 Go to the issue