Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Carboxymethyl chitosan reduces inflammation and promotes osteogenesis in a rabbit knee replacement model

Authors: Feng Liu, Hai-Yan Li, Zhen Wang, Hai-Ning Zhang, Ying-Zhen Wang, Hao Xu

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

The major causes of failure after total knee arthroplasty (TKA) include prosthesis loosening and infection. This study aimed to investigate the role of carboxymethyl chitosan (CMC) in knee arthroplasty.

Methods

A total of 20 New Zealand white rabbits that were divided into two groups (10 in the control group and 10 in the chitosan group) were included in the study. They underwent TKA surgery, and all were implanted with titanium rod prostheses; the prosthesis in the chitosan group was coated with CMC. After 12 weeks, all rabbits were euthanized, and the following analyses of some specific surface membrane tissues around the prosthesis were performed: X-ray analysis; micro-computed tomography scan; haematoxylin and eosin, Van Gieson, and Von Kossa staining; reverse transcription polymerase chain reaction; and Western Blotting.

Results

The result of CCK8 test showed CMC can promote cell proliferation and increase cell viability. Radiological result showed better amount of bone deposits and more bone formation in the chitosan group. HE staining result showed CMC reduces inflammation around the prosthesis. The VG and Von Kossa staining results showed CMC can promote bone deposition around prosthesis. And according to the results of PCR and WB, the OCN content was higher in the chitosan group, while the MMPs content was lower. The chitosan group has an increased OPG/RANKL ratio than the control group.

Conclusion

CMC can effectively inhibit the inflammatory response around the prosthesis and osteoclast activation and promote osteogenesis by interfering with the osteoprotegerin/receptor activator of nuclear factor kappa-Β ligand/receptor activator of nuclear factor kappa-Β signalling pathway.
Literature
1.
go back to reference Lohmander LS, Roos EM. Clinical update: treating osteoarthritis. Lancet (London, England). 2007;370(9605):2082–4.CrossRef Lohmander LS, Roos EM. Clinical update: treating osteoarthritis. Lancet (London, England). 2007;370(9605):2082–4.CrossRef
2.
go back to reference Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. Jama. 2012;308(12):1227–36.CrossRef Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. Jama. 2012;308(12):1227–36.CrossRef
3.
go back to reference Greidanus NV, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. J Arthroplast. 2011;26(4):615–20.CrossRef Greidanus NV, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. J Arthroplast. 2011;26(4):615–20.CrossRef
4.
go back to reference Postler A, Lutzner C, Beyer F, Tille E, Lutzner J. Analysis of Total knee Arthroplasty revision causes. BMC Musculoskelet Disord. 2018;19(1):55.CrossRef Postler A, Lutzner C, Beyer F, Tille E, Lutzner J. Analysis of Total knee Arthroplasty revision causes. BMC Musculoskelet Disord. 2018;19(1):55.CrossRef
5.
go back to reference Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M. Early failures in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:315–8.CrossRef Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M. Early failures in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:315–8.CrossRef
6.
go back to reference Mortazavi SM, Schwartzenberger J, Austin MS, Purtill JJ, Parvizi J. Revision total knee arthroplasty infection: incidence and predictors. Clin Orthop Relat Res. 2010;468(8):2052–9.CrossRef Mortazavi SM, Schwartzenberger J, Austin MS, Purtill JJ, Parvizi J. Revision total knee arthroplasty infection: incidence and predictors. Clin Orthop Relat Res. 2010;468(8):2052–9.CrossRef
7.
go back to reference Khan M, Osman K, Green G, Haddad FS. The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J. 2016;98-b(1 Suppl A):105–12.CrossRef Khan M, Osman K, Green G, Haddad FS. The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J. 2016;98-b(1 Suppl A):105–12.CrossRef
8.
go back to reference Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model--an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.CrossRef Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model--an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25(24):5547–56.CrossRef
9.
go back to reference Qin CQ, Huang DS, Zhang C, Song B, Huang JB, Ding Y. Lentivirus-mediated short hairpin RNA interference targeting TNF-alpha in macrophages inhibits particle-induced inflammation and osteolysis in vitro and in vivo. BMC Musculoskelet Disord. 2016;17(1):431.CrossRef Qin CQ, Huang DS, Zhang C, Song B, Huang JB, Ding Y. Lentivirus-mediated short hairpin RNA interference targeting TNF-alpha in macrophages inhibits particle-induced inflammation and osteolysis in vitro and in vivo. BMC Musculoskelet Disord. 2016;17(1):431.CrossRef
10.
go back to reference Ulrich-Vinther M, Carmody EE, Goater JJ, Sb K, O'Keefe RJ, Schwarz EM. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am. 2002;84-a(8):1405–12.CrossRef Ulrich-Vinther M, Carmody EE, Goater JJ, Sb K, O'Keefe RJ, Schwarz EM. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am. 2002;84-a(8):1405–12.CrossRef
11.
go back to reference Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015;13(3):1133–74.CrossRef Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs. 2015;13(3):1133–74.CrossRef
12.
go back to reference LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–88.CrossRef LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172–88.CrossRef
13.
go back to reference Fiamingo A, Campana-Filho SP. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydr Polym. 2016;143:155–63.CrossRef Fiamingo A, Campana-Filho SP. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydr Polym. 2016;143:155–63.CrossRef
14.
go back to reference Huang Y, Huang J, Cai J, Lin W, Lin Q, Wu F, Luo J. Carboxymethyl chitosan/clay nanocomposites and their copper complexes: fabrication and property. Carbohydr Polym. 2015;134:390–7.CrossRef Huang Y, Huang J, Cai J, Lin W, Lin Q, Wu F, Luo J. Carboxymethyl chitosan/clay nanocomposites and their copper complexes: fabrication and property. Carbohydr Polym. 2015;134:390–7.CrossRef
15.
go back to reference Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.CrossRef Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.CrossRef
16.
go back to reference Ramasamy P, Subhapradha N, Thinesh T, Selvin J, Selvan KM, Shanmugam V, Shanmugam A. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). Int J Biol Macromol. 2017;99:682–91.CrossRef Ramasamy P, Subhapradha N, Thinesh T, Selvin J, Selvan KM, Shanmugam V, Shanmugam A. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). Int J Biol Macromol. 2017;99:682–91.CrossRef
17.
go back to reference Xu H, Guo CC, Gao ZY, Wang CY, Zhang HN. Micrometer-Sized Titanium Particles Induce Aseptic Loosening in Rabbit Knee. Biomed Res Int. 2018;2018:5410875. Xu H, Guo CC, Gao ZY, Wang CY, Zhang HN. Micrometer-Sized Titanium Particles Induce Aseptic Loosening in Rabbit Knee. Biomed Res Int. 2018;2018:5410875.
18.
go back to reference Lin HH, Peng SL, Wu J, Shih TY, Chuang KS, Shih CT. A novel two-compartment model for calculating bone volume fractions and bone mineral densities from computed tomography images. IEEE Trans Med Imaging. 2017;36(5):1094–105.CrossRef Lin HH, Peng SL, Wu J, Shih TY, Chuang KS, Shih CT. A novel two-compartment model for calculating bone volume fractions and bone mineral densities from computed tomography images. IEEE Trans Med Imaging. 2017;36(5):1094–105.CrossRef
19.
go back to reference Wedemeyer C, Neuerburg C, Pfeiffer A, Heckelei A, Bylski D, von Knoch F, Schinke T, Hilken G, Gosheger G, von Knoch M, et al. Polyethylene particle-induced bone resorption in alpha-calcitonin gene-related peptide-deficient mice. J Bone Mineral Res. 2007;22(7):1011–9.CrossRef Wedemeyer C, Neuerburg C, Pfeiffer A, Heckelei A, Bylski D, von Knoch F, Schinke T, Hilken G, Gosheger G, von Knoch M, et al. Polyethylene particle-induced bone resorption in alpha-calcitonin gene-related peptide-deficient mice. J Bone Mineral Res. 2007;22(7):1011–9.CrossRef
20.
go back to reference Fujii J, Niida S, Yasunaga Y, Yamasaki A, Ochi M. Wear debris stimulates bone-resorbing factor expression in the fibroblasts and osteoblasts. Hip Int. 2011;21(2):231–7.CrossRef Fujii J, Niida S, Yasunaga Y, Yamasaki A, Ochi M. Wear debris stimulates bone-resorbing factor expression in the fibroblasts and osteoblasts. Hip Int. 2011;21(2):231–7.CrossRef
21.
go back to reference Maoqiang L, Zhenan Z, Fengxiang L, Gang W, Yuanqing M, Ming L, Xin Z, Tingting T. Enhancement of osteoblast differentiation that is inhibited by titanium particles through inactivation of NFATc1 by VIVIT peptide. J Biomed Mater Res A. 2010;95(3):727–34.CrossRef Maoqiang L, Zhenan Z, Fengxiang L, Gang W, Yuanqing M, Ming L, Xin Z, Tingting T. Enhancement of osteoblast differentiation that is inhibited by titanium particles through inactivation of NFATc1 by VIVIT peptide. J Biomed Mater Res A. 2010;95(3):727–34.CrossRef
22.
go back to reference Lum ZC, Shieh AK, Dorr LD. Why total knees fail-a modern perspective review. World J Orthopedics. 2018;9(4):60–4.CrossRef Lum ZC, Shieh AK, Dorr LD. Why total knees fail-a modern perspective review. World J Orthopedics. 2018;9(4):60–4.CrossRef
23.
go back to reference Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–75.PubMed Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–75.PubMed
24.
go back to reference Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering--an overview. Marine Drugs. 2010;8(8):2252–66.CrossRef Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering--an overview. Marine Drugs. 2010;8(8):2252–66.CrossRef
25.
go back to reference Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biological Macromolecules. 2016;93(Pt B):1338–53.CrossRef Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biological Macromolecules. 2016;93(Pt B):1338–53.CrossRef
26.
go back to reference Sahariah P, Masson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules. 2017;18(11):3846–68. Sahariah P, Masson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules. 2017;18(11):3846–68.
27.
go back to reference Klokkevold PR, Vandemark L, Kenney EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol. 1996;67(11):1170–5.CrossRef Klokkevold PR, Vandemark L, Kenney EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol. 1996;67(11):1170–5.CrossRef
28.
go back to reference Chang SH, Wu CH, Tsai GJ. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym. 2018;181:1026–32.CrossRef Chang SH, Wu CH, Tsai GJ. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym. 2018;181:1026–32.CrossRef
29.
go back to reference Yang F, Tang J, Dai K, Huang Y. Metallic wear debris collected from patients induces apoptosis in rat primary osteoblasts via reactive oxygen speciesmediated mitochondrial dysfunction and endoplasmic reticulum stress. Mol Med Rep. 2019;19(3):1629–37.PubMedPubMedCentral Yang F, Tang J, Dai K, Huang Y. Metallic wear debris collected from patients induces apoptosis in rat primary osteoblasts via reactive oxygen speciesmediated mitochondrial dysfunction and endoplasmic reticulum stress. Mol Med Rep. 2019;19(3):1629–37.PubMedPubMedCentral
30.
go back to reference Rochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C. The role of Osteoprotegerin in vascular calcification and bone metabolism: the basis for developing new therapeutics. Calcif Tissue Int. 2019;105(3):239–51.CrossRef Rochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C. The role of Osteoprotegerin in vascular calcification and bone metabolism: the basis for developing new therapeutics. Calcif Tissue Int. 2019;105(3):239–51.CrossRef
31.
go back to reference Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009;19(1):61–72.CrossRef Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009;19(1):61–72.CrossRef
32.
go back to reference He XF, Zhang L, Zhang CH, Zhao CR, Li H, Zhang LF, Tian GF, Guo MF, Dai Z, Sui FG. Berberine alleviates oxidative stress in rats with osteoporosis through receptor activator of NF-kB/receptor activator of NF-kB ligand/osteoprotegerin (RANK/RANKL/OPG) pathway. Bosnian J Basic Med Sci. 2017;17(4):295–301. He XF, Zhang L, Zhang CH, Zhao CR, Li H, Zhang LF, Tian GF, Guo MF, Dai Z, Sui FG. Berberine alleviates oxidative stress in rats with osteoporosis through receptor activator of NF-kB/receptor activator of NF-kB ligand/osteoprotegerin (RANK/RANKL/OPG) pathway. Bosnian J Basic Med Sci. 2017;17(4):295–301.
Metadata
Title
Carboxymethyl chitosan reduces inflammation and promotes osteogenesis in a rabbit knee replacement model
Authors
Feng Liu
Hai-Yan Li
Zhen Wang
Hai-Ning Zhang
Ying-Zhen Wang
Hao Xu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03803-3

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue