Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus

Authors: Shasha Qian, Xiaolan Chen, Kai Sun, Yang Zhang, Zhenghe Li

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Recovery of recombinant negative-stranded RNA viruses from cloned cDNAs is an inefficient process as multiple viral components need to be delivered into cells for reconstitution of infectious entities. Previously studies have shown that authentic viral RNA termini are essential for efficient virus rescue. However, little is known about the activity of viral RNAs processed by different strategies in supporting recovery of plant negative-stranded RNA virus.

Methods

In this study, we used several versions of hammerhead ribozymes and a truncated cauliflower mosaic virus 35S promoter to generate precise 5′ termini of sonchus yellow net rhabdovirus (SYNV) antigenomic RNA (agRNA) derivatives. These agRNAs were co-expressed with the SYNV core proteins in Nicotiana benthamiana leaves to evaluate their efficiency in supporting fluorescent reporter gene expression from an SYNV minireplicon (MR) and rescue of full-length virus.

Results

Optimization of hammerhead ribozyme cleavage activities led to improved SYNV MR reporter gene expression. Although the MR agRNA processed by the most active hammerhead variants is comparable to the capped, precisely transcribed agRNA in supporting MR activity, efficient recovery of recombinant SYNV was only achieved with capped agRNA. Further studies showed that the capped SYNV agRNA permitted transient expression of the nucleocapsid (N) protein, and an agRNA derivatives unable to express the N protein in cis exhibited dramatically reduced rescue efficiency.

Conclusion

Our study reveals superior activity of precisely transcribed, capped SYNV agRNAs to uncapped, hammerhead ribozyme-processed agRNAs, and suggests a cis-acting function for the N protein expressed from the capped agRNA during recovery of SYNV from plasmids.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kawoka Y. Biology of negative strand RNA viruses: the power of reverse genetics. 1st ed. Berlin: Springer-Verlag; 2004.CrossRef Kawoka Y. Biology of negative strand RNA viruses: the power of reverse genetics. 1st ed. Berlin: Springer-Verlag; 2004.CrossRef
2.
go back to reference Walpita P, Flick R. Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol Lett. 2005;244:9–18.CrossRefPubMed Walpita P, Flick R. Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol Lett. 2005;244:9–18.CrossRefPubMed
3.
go back to reference Neumann G, Kawaoka Y. Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. Curr Top Microbiol Immunol. 2004;283:43–60.PubMed Neumann G, Kawaoka Y. Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. Curr Top Microbiol Immunol. 2004;283:43–60.PubMed
4.
go back to reference Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol. 2004;283:1–41.PubMed Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol. 2004;283:1–41.PubMed
5.
go back to reference Rose JK. Positive strands to the rescue again: a segmented negative-strand RNA virus derived from cloned cDNAs. Proc Natl Acad Sci U S A. 1996;93:14998–5000.CrossRefPubMedPubMedCentral Rose JK. Positive strands to the rescue again: a segmented negative-strand RNA virus derived from cloned cDNAs. Proc Natl Acad Sci U S A. 1996;93:14998–5000.CrossRefPubMedPubMedCentral
6.
go back to reference Roberts A, Rose JK. Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field. Virology. 1998;247:1–6.CrossRefPubMed Roberts A, Rose JK. Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field. Virology. 1998;247:1–6.CrossRefPubMed
7.
go back to reference Jackson AO, Li Z. Developments in plant negative-strand RNA virus reverse genetics. Annu Rev Phytopathol. 2016;54:469–98.CrossRefPubMed Jackson AO, Li Z. Developments in plant negative-strand RNA virus reverse genetics. Annu Rev Phytopathol. 2016;54:469–98.CrossRefPubMed
8.
go back to reference Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol. 2006;80:5708–15.CrossRefPubMedPubMedCentral Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol. 2006;80:5708–15.CrossRefPubMedPubMedCentral
9.
go back to reference Le Mercier P, Jacob Y, Tanner K, Tordo N. A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J Virol. 2002;76:2024–7.CrossRefPubMedPubMedCentral Le Mercier P, Jacob Y, Tanner K, Tordo N. A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J Virol. 2002;76:2024–7.CrossRefPubMedPubMedCentral
10.
go back to reference Ghanem A, Kern A, Conzelmann KK. Significantly improved rescue of rabies virus from cDNA plasmids. Eur J Cell Biol. 2012;91:10–6.CrossRefPubMed Ghanem A, Kern A, Conzelmann KK. Significantly improved rescue of rabies virus from cDNA plasmids. Eur J Cell Biol. 2012;91:10–6.CrossRefPubMed
11.
go back to reference Ammayappan A, Lapatra SE, Vakharia VN. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J Virol Methods. 2010;167:132–9.CrossRefPubMed Ammayappan A, Lapatra SE, Vakharia VN. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J Virol Methods. 2010;167:132–9.CrossRefPubMed
12.
go back to reference Huang Y, Tang Q, Nadin-Davis SA, Zhang S, Hooper CD, Ming P, et al. Development of a reverse genetics system for a human rabies virus vaccine strain employed in China. Virus Res. 2010;149:28–35.CrossRefPubMed Huang Y, Tang Q, Nadin-Davis SA, Zhang S, Hooper CD, Ming P, et al. Development of a reverse genetics system for a human rabies virus vaccine strain employed in China. Virus Res. 2010;149:28–35.CrossRefPubMed
13.
go back to reference Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K. An improved method for recovering rabies virus from cloned cDNA. J Virol Methods. 2003;107:229–36.CrossRefPubMed Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K. An improved method for recovering rabies virus from cloned cDNA. J Virol Methods. 2003;107:229–36.CrossRefPubMed
14.
go back to reference Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M. Biology of plant rhabdoviruses. Annu Rev Phytopathol. 2005;43:623–60.CrossRefPubMed Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M. Biology of plant rhabdoviruses. Annu Rev Phytopathol. 2005;43:623–60.CrossRefPubMed
15.
go back to reference Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian S, et al. Construction of a sonchus yellow net virus minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. J Virol. 2013;87:10598–611.CrossRefPubMedPubMedCentral Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian S, et al. Construction of a sonchus yellow net virus minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. J Virol. 2013;87:10598–611.CrossRefPubMedPubMedCentral
16.
go back to reference Wang Q, Ma X, Qian S, Zhou X, Sun K, Chen X, et al. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLoS Pathog. 2015;11:e1005223.CrossRefPubMedPubMedCentral Wang Q, Ma X, Qian S, Zhou X, Sun K, Chen X, et al. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLoS Pathog. 2015;11:e1005223.CrossRefPubMedPubMedCentral
17.
go back to reference Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y, et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 2006;8:1522–9.CrossRefPubMed Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y, et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 2006;8:1522–9.CrossRefPubMed
18.
go back to reference Mori M, Mise K, Kobayashi K, Okuno T, Furusawa I. Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S RNA promoter. J Gen Virol. 1991;72:243–6.CrossRefPubMed Mori M, Mise K, Kobayashi K, Okuno T, Furusawa I. Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S RNA promoter. J Gen Virol. 1991;72:243–6.CrossRefPubMed
19.
go back to reference Birikh KR, Heaton PA, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997;245:1–16.CrossRefPubMed Birikh KR, Heaton PA, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997;245:1–16.CrossRefPubMed
20.
go back to reference Sachs AB, Varani G. Eukaryotic translation initiation: there are (at least) two sides to every story. Nat Struct Biol. 2000;7:356–61.CrossRefPubMed Sachs AB, Varani G. Eukaryotic translation initiation: there are (at least) two sides to every story. Nat Struct Biol. 2000;7:356–61.CrossRefPubMed
21.
go back to reference Whelan SP, Barr JN, Wertz GW. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol. 2004;283:61–119.PubMed Whelan SP, Barr JN, Wertz GW. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol. 2004;283:61–119.PubMed
22.
go back to reference Yun T, Park A, Hill TE, Pernet O, Beaty SM, Juelich TL, et al. Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. J Virol. 2015;89:1242–53.CrossRefPubMed Yun T, Park A, Hill TE, Pernet O, Beaty SM, Juelich TL, et al. Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. J Virol. 2015;89:1242–53.CrossRefPubMed
23.
go back to reference Albarino CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol. 2009;83:5606–14.CrossRefPubMedPubMedCentral Albarino CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol. 2009;83:5606–14.CrossRefPubMedPubMedCentral
24.
go back to reference Biacchesi S, Thoulouze MI, Bearzotti M, Yu YX, Bremont M. Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol. 2000;74:11247–53.CrossRefPubMedPubMedCentral Biacchesi S, Thoulouze MI, Bearzotti M, Yu YX, Bremont M. Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol. 2000;74:11247–53.CrossRefPubMedPubMedCentral
25.
go back to reference Blakqori G, Weber F. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol. 2005;79:10420–8.CrossRefPubMedPubMedCentral Blakqori G, Weber F. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol. 2005;79:10420–8.CrossRefPubMedPubMedCentral
26.
go back to reference Elliott RM, Blakqori G, van Knippenberg IC, Koudriakova E, Li P, McLees A, et al. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. J Gen Virol. 2013;94:851–9.CrossRefPubMedPubMedCentral Elliott RM, Blakqori G, van Knippenberg IC, Koudriakova E, Li P, McLees A, et al. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. J Gen Virol. 2013;94:851–9.CrossRefPubMedPubMedCentral
27.
go back to reference Habjan M, Penski N, Spiegel M, Weber F. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol. 2008;89:2157–66.CrossRefPubMed Habjan M, Penski N, Spiegel M, Weber F. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol. 2008;89:2157–66.CrossRefPubMed
28.
29.
go back to reference Lan S, McLay Schelde L, Wang J, Kumar N, Ly H, Liang Y. Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J Virol. 2009;83:6357–62.CrossRefPubMedPubMedCentral Lan S, McLay Schelde L, Wang J, Kumar N, Ly H, Liang Y. Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. J Virol. 2009;83:6357–62.CrossRefPubMedPubMedCentral
30.
go back to reference Liang Y, Lan S, Ly H. Molecular determinants of Pichinde virus infection of guinea pigs--a small animal model system for arenaviral hemorrhagic fevers. Ann N Y Acad Sci. 2009;1171(Suppl 1):65–74.CrossRef Liang Y, Lan S, Ly H. Molecular determinants of Pichinde virus infection of guinea pigs--a small animal model system for arenaviral hemorrhagic fevers. Ann N Y Acad Sci. 2009;1171(Suppl 1):65–74.CrossRef
31.
go back to reference Lowen AC, Noonan C, McLees A, Elliott RM. Efficient bunyavirus rescue from cloned cDNA. Virology. 2004;330:493–500.CrossRefPubMed Lowen AC, Noonan C, McLees A, Elliott RM. Efficient bunyavirus rescue from cloned cDNA. Virology. 2004;330:493–500.CrossRefPubMed
32.
go back to reference Fuerst TR, Moss B. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5′ untranslated leader. J Mol Biol. 1989;206:333–48.CrossRefPubMed Fuerst TR, Moss B. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5′ untranslated leader. J Mol Biol. 1989;206:333–48.CrossRefPubMed
33.
go back to reference Moss B, Ahn BY, Amegadzie B, Gershon PD, Keck JG. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem. 1991;266:1355–8.PubMed Moss B, Ahn BY, Amegadzie B, Gershon PD, Keck JG. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem. 1991;266:1355–8.PubMed
Metadata
Title
Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus
Authors
Shasha Qian
Xiaolan Chen
Kai Sun
Yang Zhang
Zhenghe Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0776-7

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.