Skip to main content
Top
Published in: BMC Infectious Diseases 1/2020

Open Access 01-12-2020 | Candidiasis | Research article

Antifungal resistance in patients with Candidaemia: a retrospective cohort study

Authors: Namareq F. Aldardeer, Hadiel Albar, Majda Al-Attas, Abdelmoneim Eldali, Mohammed Qutub, Ashraf Hassanien, Basem Alraddadi

Published in: BMC Infectious Diseases | Issue 1/2020

Login to get access

Abstract

Background

Candidaemia is the most common form of invasive candidiasis. Resistant Candida blood stream infection (BSI) is rising, with limitations on the development of broader-spectrum antifungal agents worldwide. Our study aimed to identify the occurrence of antifungal-resistant candidaemia and the distribution of these species, determine the risk factors associated with antifungal resistance and evaluate the association of antifungal-resistant candidaemia with the length of intensive care unit (ICU) and hospital stay and with 30-day mortality.

Methods

A retrospective cohort study was conducted at King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia. Adult patients diagnosed with candidaemia from January 2006 to December 2017 were included.

Results

A total of 196 BSIs were identified in 94 males (49.74%) and 95 females (50.26%). C. glabrata was the most commonly isolated Candida species, with 59 (30%), followed by C. albicans with 46 (23%). Susceptibility data were available for 122/189 patients, of whom 26/122 (21%) were resistant to one or more antifungals. C. parapsilosis with available sensitivity data were found in 30/122 isolates, of which 10/30 (33%) were resistant to fluconazole. Risk factors significantly associated with antifungal-resistant candidaemia included previous echinocandin exposure (odds ratio (OR) =1.38; 95% confidence interval (CI) (1.02–1.85); P = 0.006) and invasive ventilation (OR = 1.3; 95% CI (1.08–1.57); P = 0.005). The median length of ICU stay was 29 days [range 12–49 days] in the antifungal-resistant group and 18 days [range 6.7–37.5 days] in the antifungal-sensitive group (P = 0.28). The median length of hospital stay was 51 days [range 21–138 days] in the antifungal-resistant group and 35 days [range 17–77 days] in the antifungal-sensitive group (P = 0.09). Thirty-day mortality was 15 (57.7%) and 54 (56.25%) among the antifungal-resistant and antifungal-sensitive groups, respectively (OR = 1.01; 95% CI (0.84–1.21); P = 0.89).

Conclusions

Our results indicate a high frequancy of non- C. albicans candidaemia. The rise in C. parapsilosis resistance to fluconazole is alarming. Further studies are required to confirm this finding.
Appendix
Available only for authorised users
Literature
1.
go back to reference Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis. 2012;73(1):45–8.CrossRef Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis. 2012;73(1):45–8.CrossRef
2.
go back to reference Kett DH, Azoulay E, Echeverria PM, Vincent JL. Extended prevalence of infection in ICUSGoI. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39(4):665–70.CrossRef Kett DH, Azoulay E, Echeverria PM, Vincent JL. Extended prevalence of infection in ICUSGoI. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39(4):665–70.CrossRef
3.
go back to reference Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective Nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17.CrossRef Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective Nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17.CrossRef
4.
go back to reference Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRef Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRef
5.
go back to reference Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.CrossRef Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.CrossRef
6.
go back to reference Garnacho-Montero J, Diaz-Martin A, Garcia-Cabrera E. Ruiz Perez de Pipaon M, Hernandez-Caballero C, Aznar-Martin J, et al. Risk factors for fluconazole-resistant candidemia. Antimicrob Agents Chemother. 2010;54(8):3149–54.CrossRef Garnacho-Montero J, Diaz-Martin A, Garcia-Cabrera E. Ruiz Perez de Pipaon M, Hernandez-Caballero C, Aznar-Martin J, et al. Risk factors for fluconazole-resistant candidemia. Antimicrob Agents Chemother. 2010;54(8):3149–54.CrossRef
7.
go back to reference Vallabhaneni S, Cleveland AA, Farley MM, Harrison LH, Schaffner W, Beldavs ZG, et al. Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data From a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect Dis. 2015;2(4):ofv163.CrossRef Vallabhaneni S, Cleveland AA, Farley MM, Harrison LH, Schaffner W, Beldavs ZG, et al. Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data From a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect Dis. 2015;2(4):ofv163.CrossRef
8.
go back to reference Akbar DH, Tahawi AT. Candidemia at a university hospital: epidemiology, risk factors and predictors of mortality. Ann Saudi Med. 2001;21(3–4):178–82.CrossRef Akbar DH, Tahawi AT. Candidemia at a university hospital: epidemiology, risk factors and predictors of mortality. Ann Saudi Med. 2001;21(3–4):178–82.CrossRef
9.
go back to reference Al-Tawfiq JA. Distribution and epidemiology of Candida species causing fungemia at a Saudi Arabian hospital, 1996-2004. Int J Infect Dis. 2007;11(3):239–44.CrossRef Al-Tawfiq JA. Distribution and epidemiology of Candida species causing fungemia at a Saudi Arabian hospital, 1996-2004. Int J Infect Dis. 2007;11(3):239–44.CrossRef
10.
go back to reference Al Thaqafi AH, Farahat FM, Al Harbi MI, Al Amri AF, Perfect JR. Predictors and outcomes of Candida bloodstream infection: eight-year surveillance, western Saudi Arabia. Int J Infect Dis. 2014;21:5–9.CrossRef Al Thaqafi AH, Farahat FM, Al Harbi MI, Al Amri AF, Perfect JR. Predictors and outcomes of Candida bloodstream infection: eight-year surveillance, western Saudi Arabia. Int J Infect Dis. 2014;21:5–9.CrossRef
11.
go back to reference Aljasser AM, Elkhizzi NA. Distribution of Candida species among bloodstream isolates. Saudi Med J. 2004;25(5):566–9. Aljasser AM, Elkhizzi NA. Distribution of Candida species among bloodstream isolates. Saudi Med J. 2004;25(5):566–9.
12.
go back to reference Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak MA, Lee-Yang W, et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother. 2006;50(4):1287–92.CrossRef Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak MA, Lee-Yang W, et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother. 2006;50(4):1287–92.CrossRef
13.
go back to reference Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):11–41.CrossRef Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):11–41.CrossRef
14.
go back to reference Moran C, Grussemeyer CA, Spalding JR, Benjamin DK Jr, Reed SD. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am J Infect Control. 2010;38(1):78–80.CrossRef Moran C, Grussemeyer CA, Spalding JR, Benjamin DK Jr, Reed SD. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am J Infect Control. 2010;38(1):78–80.CrossRef
15.
go back to reference Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, Lockhart SR, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis. 2012;55(10):1352–61.CrossRef Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, Lockhart SR, et al. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis. 2012;55(10):1352–61.CrossRef
16.
go back to reference Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203.CrossRef Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203.CrossRef
17.
go back to reference Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14(11):e954–66.CrossRef Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14(11):e954–66.CrossRef
18.
go back to reference Ben-Ami R, Olshtain-Pops K, Krieger M, Oren I, Bishara J, Dan M, et al. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob Agents Chemother. 2012;56(5):2518–23.CrossRef Ben-Ami R, Olshtain-Pops K, Krieger M, Oren I, Bishara J, Dan M, et al. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob Agents Chemother. 2012;56(5):2518–23.CrossRef
19.
go back to reference Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55(2):532–8.CrossRef Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dromer F, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011;55(2):532–8.CrossRef
20.
go back to reference Shah DN, Yau R, Lasco TM, Weston J, Salazar M, Palmer HR, et al. Impact of prior inappropriate fluconazole dosing on isolation of fluconazole-nonsusceptible Candida species in hospitalized patients with candidemia. Antimicrob Agents Chemother. 2012;56(6):3239–43.CrossRef Shah DN, Yau R, Lasco TM, Weston J, Salazar M, Palmer HR, et al. Impact of prior inappropriate fluconazole dosing on isolation of fluconazole-nonsusceptible Candida species in hospitalized patients with candidemia. Antimicrob Agents Chemother. 2012;56(6):3239–43.CrossRef
21.
go back to reference Souza AC, Fuchs BB, Pinhati HM, Siqueira RA, Hagen F, Meis JF, et al. Candida parapsilosis resistance to fluconazole: molecular mechanisms and in vivo impact in infected galleria mellonella larvae. Antimicrob Agents Chemother. 2015;59(10):6581–7.CrossRef Souza AC, Fuchs BB, Pinhati HM, Siqueira RA, Hagen F, Meis JF, et al. Candida parapsilosis resistance to fluconazole: molecular mechanisms and in vivo impact in infected galleria mellonella larvae. Antimicrob Agents Chemother. 2015;59(10):6581–7.CrossRef
22.
go back to reference Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis. 2014;20(11):1833–40.CrossRef Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis. 2014;20(11):1833–40.CrossRef
23.
go back to reference Canton E, Peman J, Quindos G, Eraso E, Miranda-Zapico I, Alvarez M, et al. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother. 2011;55(12):5590–6.CrossRef Canton E, Peman J, Quindos G, Eraso E, Miranda-Zapico I, Alvarez M, et al. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother. 2011;55(12):5590–6.CrossRef
24.
go back to reference Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.CrossRef Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.CrossRef
Metadata
Title
Antifungal resistance in patients with Candidaemia: a retrospective cohort study
Authors
Namareq F. Aldardeer
Hadiel Albar
Majda Al-Attas
Abdelmoneim Eldali
Mohammed Qutub
Ashraf Hassanien
Basem Alraddadi
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2020
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4710-z

Other articles of this Issue 1/2020

BMC Infectious Diseases 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.