Skip to main content
Top
Published in: Diabetologia 3/2008

01-03-2008 | Commentary

Candidate gene studies reveal that the WFS1 gene joins the expanding list of novel type 2 diabetes genes

Authors: J. Wasson, M. A. Permutt

Published in: Diabetologia | Issue 3/2008

Login to get access

Excerpt

Wolfram syndrome, originally described in 1938, is a rare, autosomal recessive disease that is characterised by young onset insulin-dependent diabetes, progressive sensorineural deafness, diabetes insipidus, autonomic nervous system dysfunction and, ultimately, brainstem atrophy and premature death [1]. The Wolfram gene (WFS1), which encodes wolframin, was mapped to chromosome 4p in families with multiple affected individuals [2], and cloned in 1998 [3]. Wolframin is a protein of 890 amino acids that is produced in a wide variety of tissues, most prominently in pancreatic beta cells and brain. Over 100 missense and non-sense mutations have been described patients. As these mutations are associated with a non-immune loss of beta cells and diabetes, the gene was subsequently evaluated in more common forms of diabetes. …
Literature
1.
go back to reference Minton JA, Rainbow LA, Ricketts C, Barrett TG (2003) Wolfram syndrome. Rev Endocr Metab Disord 4:53–59PubMedCrossRef Minton JA, Rainbow LA, Ricketts C, Barrett TG (2003) Wolfram syndrome. Rev Endocr Metab Disord 4:53–59PubMedCrossRef
2.
go back to reference Polymeropoulos MH, Swift RG, Swift M (1994) Linkage of the gene for Wolfram syndrome to markers on the short arm of chromosome 4. Nat Genet 8:95–97PubMedCrossRef Polymeropoulos MH, Swift RG, Swift M (1994) Linkage of the gene for Wolfram syndrome to markers on the short arm of chromosome 4. Nat Genet 8:95–97PubMedCrossRef
3.
go back to reference Inoue H, Tanizawa Y, Wasson J et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148PubMedCrossRef Inoue H, Tanizawa Y, Wasson J et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148PubMedCrossRef
4.
go back to reference Barrett TG (2007) Differential diagnosis of type 1 diabetes: which genetic syndromes need to be considered? Pediatr Diabetes 8(Suppl 6):15–23PubMedCrossRef Barrett TG (2007) Differential diagnosis of type 1 diabetes: which genetic syndromes need to be considered? Pediatr Diabetes 8(Suppl 6):15–23PubMedCrossRef
5.
go back to reference Minton JA, Hattersley AT, Owen K et al (2002) Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U.K. populations. Diabetes 51:1287–1290PubMedCrossRef Minton JA, Hattersley AT, Owen K et al (2002) Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U.K. populations. Diabetes 51:1287–1290PubMedCrossRef
6.
go back to reference Sandhu MS, Weedon MN, Fawcett KA et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39:951–953PubMedCrossRef Sandhu MS, Weedon MN, Fawcett KA et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39:951–953PubMedCrossRef
7.
go back to reference Franks PW, Rolandsson O, Debenham SL et al (2008) Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia (in press) DOI 10.1007/s00125-007-0887-6 Franks PW, Rolandsson O, Debenham SL et al (2008) Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia (in press) DOI 10.​1007/​s00125-007-0887-6
8.
go back to reference Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336PubMedCrossRef Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336PubMedCrossRef
9.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef
10.
go back to reference Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef
11.
go back to reference Florez JC, Jablonski KA, McAteer J et al (2008) Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia (in press) DOI 10.1007/s00125-007-0891-x Florez JC, Jablonski KA, McAteer J et al (2008) Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia (in press) DOI 10.1007/s00125-007-0891-x
12.
go back to reference Hofmann S, Philbrook C, Gerbitz KD, Bauer MF (2003) Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet 12:2003–2012PubMedCrossRef Hofmann S, Philbrook C, Gerbitz KD, Bauer MF (2003) Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet 12:2003–2012PubMedCrossRef
13.
go back to reference Osman AA, Saito M, Makepeace C et al (2003) Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem 278:52755–52762PubMedCrossRef Osman AA, Saito M, Makepeace C et al (2003) Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem 278:52755–52762PubMedCrossRef
14.
go back to reference Riggs AC, Bernal-Mizrachi E, Ohsugi M et al (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313–2321PubMedCrossRef Riggs AC, Bernal-Mizrachi E, Ohsugi M et al (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313–2321PubMedCrossRef
15.
go back to reference Ueda K, Kawano J, Takeda K et al (2005) Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation. Eur J Endocrinol 153:167–176PubMedCrossRef Ueda K, Kawano J, Takeda K et al (2005) Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation. Eur J Endocrinol 153:167–176PubMedCrossRef
16.
go back to reference Lipson KL, Fonseca SG, Ishigaki S et al (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 4:245–254PubMedCrossRef Lipson KL, Fonseca SG, Ishigaki S et al (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 4:245–254PubMedCrossRef
17.
go back to reference Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163PubMedCrossRef Harding HP, Zeng H, Zhang Y et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163PubMedCrossRef
18.
go back to reference Senee V, Vattem KM, Delepine M et al (2004) Wolcott–Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53:1876–1883PubMedCrossRef Senee V, Vattem KM, Delepine M et al (2004) Wolcott–Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53:1876–1883PubMedCrossRef
19.
go back to reference Ishihara H, Takeda S, Tamura A et al (2004) Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 13:1159–1170PubMedCrossRef Ishihara H, Takeda S, Tamura A et al (2004) Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 13:1159–1170PubMedCrossRef
Metadata
Title
Candidate gene studies reveal that the WFS1 gene joins the expanding list of novel type 2 diabetes genes
Authors
J. Wasson
M. A. Permutt
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2008
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-007-0920-9

Other articles of this Issue 3/2008

Diabetologia 3/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.