Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Candida Balanitis | Research

The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II

Authors: Fateme Eskandari, Yasamin Ghahramani, Abbas Abbaszadegan, Ahmad Gholami

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP).

Methods

The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05).

Results

All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se.

Conclusion

The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Literature
1.
go back to reference Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, et al. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics. 2020;10(2):757.PubMedPubMedCentralCrossRef Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, et al. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics. 2020;10(2):757.PubMedPubMedCentralCrossRef
2.
go back to reference Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31(45):1804838.CrossRef Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31(45):1804838.CrossRef
3.
go back to reference Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: present and future. J Int Oral Health. 2014;6(1):121.PubMedPubMedCentral Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: present and future. J Int Oral Health. 2014;6(1):121.PubMedPubMedCentral
4.
go back to reference Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, et al. Multifunctional platforms based on graphene oxide and natural products. Medicina. 2019;55(6):230.PubMedPubMedCentralCrossRef Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, et al. Multifunctional platforms based on graphene oxide and natural products. Medicina. 2019;55(6):230.PubMedPubMedCentralCrossRef
5.
go back to reference Festinger N, Kisielewska A, Burnat B, Ranoszek-Soliwoda K, Grobelny J, Koszelska K, et al. The influence of graphene oxide composition on properties of surface-modified metal electrodes. Materials. 2022;15(21):7684.PubMedPubMedCentralCrossRef Festinger N, Kisielewska A, Burnat B, Ranoszek-Soliwoda K, Grobelny J, Koszelska K, et al. The influence of graphene oxide composition on properties of surface-modified metal electrodes. Materials. 2022;15(21):7684.PubMedPubMedCentralCrossRef
6.
go back to reference Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine. 2016;11:1927.PubMedPubMedCentralCrossRef Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine. 2016;11:1927.PubMedPubMedCentralCrossRef
8.
go back to reference Tahriri M, Del Monico M, Moghanian A, Yaraki MT, Torres R, Yadegari A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C. 2019;102:171–85.CrossRef Tahriri M, Del Monico M, Moghanian A, Yaraki MT, Torres R, Yadegari A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C. 2019;102:171–85.CrossRef
9.
go back to reference Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: a review. Colloids Surf B Biointerfaces. 2021;199: 111509.PubMedCrossRef Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: a review. Colloids Surf B Biointerfaces. 2021;199: 111509.PubMedCrossRef
10.
go back to reference Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Curr Drug Deliv. 2019;16(3):195–214.PubMedCrossRef Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Curr Drug Deliv. 2019;16(3):195–214.PubMedCrossRef
11.
go back to reference Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces. 2015;7(12):6966–73.PubMedCrossRef Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces. 2015;7(12):6966–73.PubMedCrossRef
12.
go back to reference Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials. 2021;11(5):1083.PubMedPubMedCentralCrossRef Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials. 2021;11(5):1083.PubMedPubMedCentralCrossRef
13.
go back to reference Lange A, Sawosz E, Wierzbicki M, Kutwin M, Daniluk K, Strojny B, et al. Nanocomposites of graphene oxide—silver nanoparticles for enhanced antibacterial activity: mechanism of action and medical textiles coating. Materials. 2022;15(9):3122.PubMedPubMedCentralCrossRef Lange A, Sawosz E, Wierzbicki M, Kutwin M, Daniluk K, Strojny B, et al. Nanocomposites of graphene oxide—silver nanoparticles for enhanced antibacterial activity: mechanism of action and medical textiles coating. Materials. 2022;15(9):3122.PubMedPubMedCentralCrossRef
14.
go back to reference Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46(10):2211–24.PubMedCrossRef Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46(10):2211–24.PubMedCrossRef
15.
go back to reference Ma B, Guo S, Nishina Y, Bianco A. Reaction between graphene oxide and intracellular glutathione affects cell viability and proliferation. ACS Appl Mater Interfaces. 2021;13(3):3528–35.PubMedCrossRef Ma B, Guo S, Nishina Y, Bianco A. Reaction between graphene oxide and intracellular glutathione affects cell viability and proliferation. ACS Appl Mater Interfaces. 2021;13(3):3528–35.PubMedCrossRef
16.
go back to reference Politano GG, Cazzanelli E, Versace C, Vena C, De Santo MP, Castriota M, et al. Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications. Appl Surf Sci. 2018;427:927–33.CrossRef Politano GG, Cazzanelli E, Versace C, Vena C, De Santo MP, Castriota M, et al. Graphene oxide on magnetron sputtered silver thin films for SERS and metamaterial applications. Appl Surf Sci. 2018;427:927–33.CrossRef
17.
go back to reference Shahriari S, Sastry M, Panjikar S, Raman RS. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol Sci Appl. 2021;14:197.PubMedPubMedCentralCrossRef Shahriari S, Sastry M, Panjikar S, Raman RS. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol Sci Appl. 2021;14:197.PubMedPubMedCentralCrossRef
18.
go back to reference Lozovskis P, Jankauskaitė V, Guobienė A, Kareivienė V, Vitkauskienė A. Effect of graphene oxide and silver nanoparticles hybrid composite on P. aeruginosa strains with acquired resistance genes. Int J Nanomedicine. 2020;15:5147.PubMedPubMedCentralCrossRef Lozovskis P, Jankauskaitė V, Guobienė A, Kareivienė V, Vitkauskienė A. Effect of graphene oxide and silver nanoparticles hybrid composite on P. aeruginosa strains with acquired resistance genes. Int J Nanomedicine. 2020;15:5147.PubMedPubMedCentralCrossRef
19.
go back to reference Vi TTT, Rajesh Kumar S, Rout B, Liu C-H, Wong C-B, Chang C-W, et al. The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials. 2018;8(3):163.PubMedPubMedCentralCrossRef Vi TTT, Rajesh Kumar S, Rout B, Liu C-H, Wong C-B, Chang C-W, et al. The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials. 2018;8(3):163.PubMedPubMedCentralCrossRef
20.
go back to reference Yu C-H, Chen G-Y, Xia M-Y, Xie Y, Chi Y-Q, He Z-Y, et al. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B: Biointerfaces. 2020;191: 111009.PubMedCrossRef Yu C-H, Chen G-Y, Xia M-Y, Xie Y, Chi Y-Q, He Z-Y, et al. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B: Biointerfaces. 2020;191: 111009.PubMedCrossRef
21.
go back to reference Truong TTV, Kumar SR, Huang Y-T, Chen DW, Liu Y-K, Lue SJ. Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets. Nanomaterials. 2020;10(6):1207.PubMedPubMedCentralCrossRef Truong TTV, Kumar SR, Huang Y-T, Chen DW, Liu Y-K, Lue SJ. Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets. Nanomaterials. 2020;10(6):1207.PubMedPubMedCentralCrossRef
22.
go back to reference Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105:176–89.PubMedCrossRef Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105:176–89.PubMedCrossRef
23.
go back to reference Pang L, Dai C, Bi L, Guo Z, Fan J. Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale res lett. 2017;12(1):1–9.CrossRef Pang L, Dai C, Bi L, Guo Z, Fan J. Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale res lett. 2017;12(1):1–9.CrossRef
24.
go back to reference Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol lett. 2011;200(3):201–10.PubMedCrossRef Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol lett. 2011;200(3):201–10.PubMedCrossRef
25.
go back to reference Adl A, Razavian A, Eskandari F. The efficacy of EndoActivator, passive ultrasonic irrigation, and Ultra X in removing calcium hydroxide from root canals: an in-vitro study. BMC Oral Health. 2022;22(1):1–7.CrossRef Adl A, Razavian A, Eskandari F. The efficacy of EndoActivator, passive ultrasonic irrigation, and Ultra X in removing calcium hydroxide from root canals: an in-vitro study. BMC Oral Health. 2022;22(1):1–7.CrossRef
26.
go back to reference Gokturk H, Ozkocak I, Buyukgebiz F, Demir O. An in vitro evaluation of various irrigation techniques for the removal of double antibiotic paste from root canal surfaces. J Appl Oral Sci. 2016;24:568–74.PubMedPubMedCentralCrossRef Gokturk H, Ozkocak I, Buyukgebiz F, Demir O. An in vitro evaluation of various irrigation techniques for the removal of double antibiotic paste from root canal surfaces. J Appl Oral Sci. 2016;24:568–74.PubMedPubMedCentralCrossRef
27.
go back to reference Gharib DSH, Salman RF. Feasibility of the crude extracts of Amorphophallus paeoniifolius and Colocasia esculenta as intracanal medicaments in endodontic therapy in comparison to the 940 nm diode laser: an in vitro antimicrobial study. J Dent Sci. 2022;18(1):145–56. Gharib DSH, Salman RF. Feasibility of the crude extracts of Amorphophallus paeoniifolius and Colocasia esculenta as intracanal medicaments in endodontic therapy in comparison to the 940 nm diode laser: an in vitro antimicrobial study. J Dent Sci. 2022;18(1):145–56.
28.
go back to reference Porciuncula de Almeida M, Angelo da Cunha Neto M, Paula Pinto K, Rivera Fidel S, Joao Nogueira Leal Silva E, Moura Sassone L. Antibacterial efficacy and discolouration potential of antibiotic pastes with macrogol for regenerative endodontic therapy. Aust Endod J. 2021;47(2):157–62.PubMedCrossRef Porciuncula de Almeida M, Angelo da Cunha Neto M, Paula Pinto K, Rivera Fidel S, Joao Nogueira Leal Silva E, Moura Sassone L. Antibacterial efficacy and discolouration potential of antibiotic pastes with macrogol for regenerative endodontic therapy. Aust Endod J. 2021;47(2):157–62.PubMedCrossRef
29.
go back to reference Sarraf P, Assadi A, Kiomarsi N, Mohammadian F, Assadi A, Shamshiri AR. Effect of intracanal medicaments on pull-out bond strength of fiber post cemented with a self-adhesive system. Eur J Dent. 2019;13(03):420–5.PubMedPubMedCentralCrossRef Sarraf P, Assadi A, Kiomarsi N, Mohammadian F, Assadi A, Shamshiri AR. Effect of intracanal medicaments on pull-out bond strength of fiber post cemented with a self-adhesive system. Eur J Dent. 2019;13(03):420–5.PubMedPubMedCentralCrossRef
30.
go back to reference Verma R, Fischer BI, Gregory RL, Yassen GH. The radiopacity and antimicrobial properties of different radiopaque double antibiotic pastes used in regenerative endodontics. J Endod. 2018;44(9):1376–80.PubMedCrossRef Verma R, Fischer BI, Gregory RL, Yassen GH. The radiopacity and antimicrobial properties of different radiopaque double antibiotic pastes used in regenerative endodontics. J Endod. 2018;44(9):1376–80.PubMedCrossRef
31.
go back to reference Sadek RW, Moussa SM, El Backly RM, Hammouda AF. Evaluation of the efficacy of three antimicrobial agents used for regenerative endodontics: an in vitro study. Microb Drug Resist. 2019;25(5):761–71.PubMedCrossRef Sadek RW, Moussa SM, El Backly RM, Hammouda AF. Evaluation of the efficacy of three antimicrobial agents used for regenerative endodontics: an in vitro study. Microb Drug Resist. 2019;25(5):761–71.PubMedCrossRef
32.
go back to reference Dewi A, Upara C, Krongbaramee T, Louwakul P, Srisuwan T, Khemaleelakul S. Optimal antimicrobial concentration of mixed antibiotic pastes in eliminating Enterococcus faecalis from root dentin. Aust Endod J. 2021;47(2):273–80.PubMedCrossRef Dewi A, Upara C, Krongbaramee T, Louwakul P, Srisuwan T, Khemaleelakul S. Optimal antimicrobial concentration of mixed antibiotic pastes in eliminating Enterococcus faecalis from root dentin. Aust Endod J. 2021;47(2):273–80.PubMedCrossRef
33.
go back to reference Khoshkhounejad M, Afshar MS, Jabalameli F, Emaneini M, Sharifian M. Cytotoxicity evaluation of minimum antibacterial values of different medicaments used in endodontic regenerative procedures. Eur J Dent. 2019;13(04):514–20.PubMedPubMedCentralCrossRef Khoshkhounejad M, Afshar MS, Jabalameli F, Emaneini M, Sharifian M. Cytotoxicity evaluation of minimum antibacterial values of different medicaments used in endodontic regenerative procedures. Eur J Dent. 2019;13(04):514–20.PubMedPubMedCentralCrossRef
34.
go back to reference McIntyre PW, Wu JL, Kolte R, Zhang R, Gregory RL, Bruzzaniti A, et al. The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clin Oral Investig. 2019;23(3):1051–9.PubMedCrossRef McIntyre PW, Wu JL, Kolte R, Zhang R, Gregory RL, Bruzzaniti A, et al. The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clin Oral Investig. 2019;23(3):1051–9.PubMedCrossRef
35.
go back to reference Madhukumar M, Geetha P, Nair KR, Unnikrishnan M. The effects of double antibiotic paste and amoxicillin-clavulanate paste used in endodontic regeneration on microhardness of radicular dentine: an In vitro study. J Pharm Bioallied Sci. 2021;13(Suppl 1):S510.PubMedPubMedCentralCrossRef Madhukumar M, Geetha P, Nair KR, Unnikrishnan M. The effects of double antibiotic paste and amoxicillin-clavulanate paste used in endodontic regeneration on microhardness of radicular dentine: an In vitro study. J Pharm Bioallied Sci. 2021;13(Suppl 1):S510.PubMedPubMedCentralCrossRef
36.
go back to reference Yu C-H, Chen G-Y, Xia M-Y, Xie Y, Chi Y-Q, He Z-Y, et al. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B Biointerfaces. 2020;191:111009.PubMedCrossRef Yu C-H, Chen G-Y, Xia M-Y, Xie Y, Chi Y-Q, He Z-Y, et al. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B Biointerfaces. 2020;191:111009.PubMedCrossRef
37.
go back to reference Barbachyn MR. Recent advances in the discovery of hybrid antibacterial agents. Annu Rep Med Chem. 2008;43:281–90. Barbachyn MR. Recent advances in the discovery of hybrid antibacterial agents. Annu Rep Med Chem. 2008;43:281–90.
38.
go back to reference Gholami A, Ghezelbash K, Asheghi B, Abbaszadegan A, Amini A. An in vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on enterococcus faecalis. J Nanomater. 2022;2022:6405772. Gholami A, Ghezelbash K, Asheghi B, Abbaszadegan A, Amini A. An in vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on enterococcus faecalis. J Nanomater. 2022;2022:6405772.
39.
go back to reference Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health. 2023;23(1):1–10.CrossRef Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health. 2023;23(1):1–10.CrossRef
40.
go back to reference Abouelenien SS, Ibrahim SM, Shaker OG, Ahmed GM. Evaluation of postoperative pain in infected root canals after using double antibiotic paste versus calcium hydroxide as intra-canal medication: a randomized controlled trial. F1000Research. 2018;7:1768.CrossRef Abouelenien SS, Ibrahim SM, Shaker OG, Ahmed GM. Evaluation of postoperative pain in infected root canals after using double antibiotic paste versus calcium hydroxide as intra-canal medication: a randomized controlled trial. F1000Research. 2018;7:1768.CrossRef
41.
go back to reference Zancan RF, Cavenago BC, Oda DF, Bramante CM, Andrade FBd, Duarte MAH. Antimicrobial activity and physicochemical properties of antibiotic pastes used in regenerative endodontics. Braz Dent J. 2019;30:536–41.PubMedCrossRef Zancan RF, Cavenago BC, Oda DF, Bramante CM, Andrade FBd, Duarte MAH. Antimicrobial activity and physicochemical properties of antibiotic pastes used in regenerative endodontics. Braz Dent J. 2019;30:536–41.PubMedCrossRef
42.
go back to reference Gholami A, Ebrahiminezhad A, Abootalebi N, Ghasemi Y. Synergistic evaluation of functionalized magnetic nanoparticles and antibiotics against Staphylococcus aureus and Escherichia coli. Pharm Nanotechnol. 2018;6(4):276–86.PubMedCrossRef Gholami A, Ebrahiminezhad A, Abootalebi N, Ghasemi Y. Synergistic evaluation of functionalized magnetic nanoparticles and antibiotics against Staphylococcus aureus and Escherichia coli. Pharm Nanotechnol. 2018;6(4):276–86.PubMedCrossRef
43.
go back to reference Gholami A, Emadi F, Nazem M, Aghayi R, Khalvati B, Amini A, et al. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J Drug Deliv Sci Technol. 2020;57: 101725.CrossRef Gholami A, Emadi F, Nazem M, Aghayi R, Khalvati B, Amini A, et al. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J Drug Deliv Sci Technol. 2020;57: 101725.CrossRef
44.
go back to reference Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, et al. Antiproliferative and apoptotic effects of graphene oxide@ AlFu MOF based saponin natural product on OSCC line. Pharmaceuticals. 2022;15(9):1137.PubMedPubMedCentralCrossRef Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, et al. Antiproliferative and apoptotic effects of graphene oxide@ AlFu MOF based saponin natural product on OSCC line. Pharmaceuticals. 2022;15(9):1137.PubMedPubMedCentralCrossRef
46.
go back to reference Ahmad W, Ahmad Q, Yaseen M, Ahmad I, Hussain F, Mohamed Jan B, et al. Development of waste polystyrene-based copper oxide/reduced graphene oxide composites and their mechanical, electrical and thermal properties. Nanomaterials. 2021;11(9):2372.PubMedPubMedCentralCrossRef Ahmad W, Ahmad Q, Yaseen M, Ahmad I, Hussain F, Mohamed Jan B, et al. Development of waste polystyrene-based copper oxide/reduced graphene oxide composites and their mechanical, electrical and thermal properties. Nanomaterials. 2021;11(9):2372.PubMedPubMedCentralCrossRef
47.
go back to reference Croitoru A-M, Moroșan A, Tihăuan B, Oprea O, Motelică L, Trușcă R, et al. Novel graphene oxide/quercetin and graphene oxide/juglone nanostructured platforms as effective drug delivery systems with biomedical applications. Nanomaterials. 2022;12(11):1943.PubMedPubMedCentralCrossRef Croitoru A-M, Moroșan A, Tihăuan B, Oprea O, Motelică L, Trușcă R, et al. Novel graphene oxide/quercetin and graphene oxide/juglone nanostructured platforms as effective drug delivery systems with biomedical applications. Nanomaterials. 2022;12(11):1943.PubMedPubMedCentralCrossRef
48.
go back to reference Mahmoodi H, Fattahi M, Motevassel M. Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling. RSC Adv. 2021;11(57):36289–304.PubMedPubMedCentralCrossRef Mahmoodi H, Fattahi M, Motevassel M. Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling. RSC Adv. 2021;11(57):36289–304.PubMedPubMedCentralCrossRef
49.
go back to reference Ali HRH, Ali R, Batakoushy HA, Derayea SM. Solid-state FTIR spectroscopic study of two binary mixtures: cefepime-metronidazole and cefoperazone-sulbactam. J Spectrosc. 2017;2017:5673214. Ali HRH, Ali R, Batakoushy HA, Derayea SM. Solid-state FTIR spectroscopic study of two binary mixtures: cefepime-metronidazole and cefoperazone-sulbactam. J Spectrosc. 2017;2017:5673214.
50.
go back to reference Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem. 2015;5(7):340–4. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem. 2015;5(7):340–4.
51.
go back to reference Rezaei A, Aligholi H, Zeraatpisheh Z, Gholami A, Mirzaei E. Collagen/chitosan-functionalized graphene oxide hydrogel provide a 3D matrix for neural stem/precursor cells survival, adhesion, infiltration and migration. J Bioact Compat Polym. 2021;36(4):296–313.CrossRef Rezaei A, Aligholi H, Zeraatpisheh Z, Gholami A, Mirzaei E. Collagen/chitosan-functionalized graphene oxide hydrogel provide a 3D matrix for neural stem/precursor cells survival, adhesion, infiltration and migration. J Bioact Compat Polym. 2021;36(4):296–313.CrossRef
52.
go back to reference Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial activity of polymer nanocomposites incorporating graphene and its derivatives: a state of art. Polymers. 2021;13(13):2105.PubMedPubMedCentralCrossRef Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial activity of polymer nanocomposites incorporating graphene and its derivatives: a state of art. Polymers. 2021;13(13):2105.PubMedPubMedCentralCrossRef
54.
go back to reference Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, et al. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. a scope review. Front Bioeng Biotechnol. 2020;8:465.PubMedPubMedCentralCrossRef Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, et al. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. a scope review. Front Bioeng Biotechnol. 2020;8:465.PubMedPubMedCentralCrossRef
55.
go back to reference Vi TTT, Kumar SR, Pang J-HS, Liu Y-K, Chen DW, Lue S. Synergistic antibacterial activity of silver-loaded graphene oxide towards staphylococcus aureus and escherichia coli. Nanomaterials. 2020;10(2):366.PubMedCentralCrossRef Vi TTT, Kumar SR, Pang J-HS, Liu Y-K, Chen DW, Lue S. Synergistic antibacterial activity of silver-loaded graphene oxide towards staphylococcus aureus and escherichia coli. Nanomaterials. 2020;10(2):366.PubMedCentralCrossRef
56.
go back to reference Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–57.PubMedCrossRef Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–57.PubMedCrossRef
57.
go back to reference Rostamian R, Behnejad H. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Ecotoxicol Environ Saf. 2018;147:117–23.PubMedCrossRef Rostamian R, Behnejad H. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Ecotoxicol Environ Saf. 2018;147:117–23.PubMedCrossRef
58.
go back to reference Ai Y, Liu Y, Huo Y, Zhao C, Sun L, Han B, et al. Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci Nano. 2019;6(11):3336–48.CrossRef Ai Y, Liu Y, Huo Y, Zhao C, Sun L, Han B, et al. Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci Nano. 2019;6(11):3336–48.CrossRef
59.
go back to reference Jaworski S, Wierzbicki M, Sawosz E, Jung A, Gielerak G, Biernat J, et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale res lett. 2018;13(1):1–17.CrossRef Jaworski S, Wierzbicki M, Sawosz E, Jung A, Gielerak G, Biernat J, et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale res lett. 2018;13(1):1–17.CrossRef
60.
go back to reference Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, et al. Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces. 2013;5(9):3867–74.PubMedCrossRef Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, et al. Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces. 2013;5(9):3867–74.PubMedCrossRef
61.
go back to reference Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–6.PubMedCrossRef Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–6.PubMedCrossRef
62.
go back to reference Wang M, Li Z, Zhang Y, Li Y, Li N, Huang D, et al. Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria. J Hazard Mater. 2021;412: 125333.PubMedCrossRef Wang M, Li Z, Zhang Y, Li Y, Li N, Huang D, et al. Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria. J Hazard Mater. 2021;412: 125333.PubMedCrossRef
63.
go back to reference Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf B: Biointerfaces. 2019;181:6–15.PubMedCrossRef Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf B: Biointerfaces. 2019;181:6–15.PubMedCrossRef
64.
go back to reference Khalil WF, El-Sayyad GS, El Rouby WM, Sadek M, Farghali AA, El-Batal AI. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int J Biol Macromol. 2020;164:1370–83.PubMedCrossRef Khalil WF, El-Sayyad GS, El Rouby WM, Sadek M, Farghali AA, El-Batal AI. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int J Biol Macromol. 2020;164:1370–83.PubMedCrossRef
65.
go back to reference Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD. Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials. 2020;10(2):376.PubMedPubMedCentralCrossRef Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD. Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials. 2020;10(2):376.PubMedPubMedCentralCrossRef
66.
go back to reference Qiang S, Li Z, Zhang L, Luo D, Geng R, Zeng X, et al. Cytotoxic effect of graphene oxide nanoribbons on escherichia coli. Nanomaterials. 2021;11(5):1339.PubMedPubMedCentralCrossRef Qiang S, Li Z, Zhang L, Luo D, Geng R, Zeng X, et al. Cytotoxic effect of graphene oxide nanoribbons on escherichia coli. Nanomaterials. 2021;11(5):1339.PubMedPubMedCentralCrossRef
67.
go back to reference Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX. Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B: Biointerfaces. 2017;157:1–9.PubMedCrossRef Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX. Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B: Biointerfaces. 2017;157:1–9.PubMedCrossRef
68.
go back to reference de Moraes ACM, Lima BA, de Faria AF, Brocchi M, Alves OL. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2015;10:6847.PubMedPubMedCentralCrossRef de Moraes ACM, Lima BA, de Faria AF, Brocchi M, Alves OL. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2015;10:6847.PubMedPubMedCentralCrossRef
69.
go back to reference Funk B, Kirmayer D, Sahar-Heft S, Gati I, Friedman M, Steinberg D. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 2019;19(1):1–9.CrossRef Funk B, Kirmayer D, Sahar-Heft S, Gati I, Friedman M, Steinberg D. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 2019;19(1):1–9.CrossRef
70.
go back to reference Nanda SS, Yi DK, Kim K. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep. 2016;6(1):1–12.CrossRef Nanda SS, Yi DK, Kim K. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep. 2016;6(1):1–12.CrossRef
71.
go back to reference Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense walR RNA inhibits the pathogenicity of Enterococcus faecalis in periapical periodontitis. J Dent Sci. 2020;15(1):65–74.PubMedCrossRef Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense walR RNA inhibits the pathogenicity of Enterococcus faecalis in periapical periodontitis. J Dent Sci. 2020;15(1):65–74.PubMedCrossRef
72.
go back to reference Ramasamy M, Nanda SS, Lee J-H, Lee J. Construction of alizarin conjugated graphene oxide composites for inhibition of Candida albicans biofilms. Biomolecules. 2020;10(4):565.PubMedPubMedCentralCrossRef Ramasamy M, Nanda SS, Lee J-H, Lee J. Construction of alizarin conjugated graphene oxide composites for inhibition of Candida albicans biofilms. Biomolecules. 2020;10(4):565.PubMedPubMedCentralCrossRef
73.
go back to reference Asadi Shahi S, Roudbar Mohammadi S, Roudbary M, Delavari H. A new formulation of graphene oxide/fluconazole compound as a promising agent against Candida albicans. Prog Biomater. 2019;8(1):43–50.PubMedPubMedCentralCrossRef Asadi Shahi S, Roudbar Mohammadi S, Roudbary M, Delavari H. A new formulation of graphene oxide/fluconazole compound as a promising agent against Candida albicans. Prog Biomater. 2019;8(1):43–50.PubMedPubMedCentralCrossRef
74.
go back to reference Palmieri V, Bugli F, Cacaci M, Perini G, Maio FD, Delogu G, et al. Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine. 2018;13(22):2867–79.PubMedCrossRef Palmieri V, Bugli F, Cacaci M, Perini G, Maio FD, Delogu G, et al. Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine. 2018;13(22):2867–79.PubMedCrossRef
75.
go back to reference Klinke T, Guggenheim B, Klimm W, Thurnheer T. Dental caries in rats associated with Candida albicans. Caries Res. 2011;45(2):100–6.PubMedCrossRef Klinke T, Guggenheim B, Klimm W, Thurnheer T. Dental caries in rats associated with Candida albicans. Caries Res. 2011;45(2):100–6.PubMedCrossRef
76.
go back to reference Kovac J, Kovac D, Slobodnikova L, Kotulova D. Enterococcus faecalis and Candida albicans in the dental root canal and periapical infections. Bratisl Lek Listy. 2013;114(12):716–20.PubMed Kovac J, Kovac D, Slobodnikova L, Kotulova D. Enterococcus faecalis and Candida albicans in the dental root canal and periapical infections. Bratisl Lek Listy. 2013;114(12):716–20.PubMed
Metadata
Title
The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II
Authors
Fateme Eskandari
Yasamin Ghahramani
Abbas Abbaszadegan
Ahmad Gholami
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02957-5

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue