Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Cancer Therapy | Review

Potential of antibody–drug conjugates (ADCs) for cancer therapy

Authors: Hany E. Marei, Carlo Cenciarelli, Anwarul Hasan

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Literature
3.
go back to reference Trail PA. Antibody drug conjugates as cancer therapeutics. Antibodies. 2013;2:113–29.CrossRef Trail PA. Antibody drug conjugates as cancer therapeutics. Antibodies. 2013;2:113–29.CrossRef
4.
go back to reference Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther. 1999;83:67–123.PubMedCrossRef Dubowchik GM, Walker MA. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther. 1999;83:67–123.PubMedCrossRef
6.
go back to reference Tolcher A. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–72.PubMedCrossRef Tolcher A. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–72.PubMedCrossRef
9.
go back to reference Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.PubMedCrossRef Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.PubMedCrossRef
10.
go back to reference Tolcher A. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–72.PubMedCrossRef Tolcher A. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–72.PubMedCrossRef
11.
go back to reference MathC G, Lot TB, Bernard J. Effet sur la leuckmie 1210 de la souris d’une combinaison par diazotation d’amkthopterine et de y-globulines de hamsters porteurs de cette leuckmie par h&&ogreffe. CR Acad Sci. 246–1626. MathC G, Lot TB, Bernard J. Effet sur la leuckmie 1210 de la souris d’une combinaison par diazotation d’amkthopterine et de y-globulines de hamsters porteurs de cette leuckmie par h&&ogreffe. CR Acad Sci. 246–1626.
12.
go back to reference Rowland G, O’neill G, Davies D. Suppression of tumour growth in mice by a drug–antibody conjugate using a novel approach to linkage. Nature. 1975;255:487–8.PubMedCrossRef Rowland G, O’neill G, Davies D. Suppression of tumour growth in mice by a drug–antibody conjugate using a novel approach to linkage. Nature. 1975;255:487–8.PubMedCrossRef
13.
go back to reference Perez HL, et al. Antibody–drug conjugates: current status and future directions. Drug Discov Today. 2014;19:869–81.PubMedCrossRef Perez HL, et al. Antibody–drug conjugates: current status and future directions. Drug Discov Today. 2014;19:869–81.PubMedCrossRef
15.
16.
go back to reference Lambert JM, Chari RV. ACS publications, 2014. Lambert JM, Chari RV. ACS publications, 2014.
17.
go back to reference Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12:329–33.PubMedCrossRef Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12:329–33.PubMedCrossRef
18.
19.
go back to reference Su D, Zhang D. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 2021;12:687926.PubMedPubMedCentralCrossRef Su D, Zhang D. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 2021;12:687926.PubMedPubMedCentralCrossRef
20.
go back to reference Elias DJ, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Can Res. 1990;50:4154–9. Elias DJ, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Can Res. 1990;50:4154–9.
21.
go back to reference Saleh MN, et al. Phase I trial of the anti-lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol. 2000;18:2282–92.PubMedCrossRef Saleh MN, et al. Phase I trial of the anti-lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol. 2000;18:2282–92.PubMedCrossRef
22.
go back to reference Schneck D, et al. Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin Pharmacol Ther. 1990;47:36–41.PubMedCrossRef Schneck D, et al. Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin Pharmacol Ther. 1990;47:36–41.PubMedCrossRef
23.
24.
go back to reference Sievers EL, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54.PubMedCrossRef Sievers EL, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54.PubMedCrossRef
25.
go back to reference Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed
26.
go back to reference Younes A, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183.PubMedPubMedCentralCrossRef Younes A, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183.PubMedPubMedCentralCrossRef
28.
go back to reference Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov. 2015;10:463–81.PubMedCrossRef Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov. 2015;10:463–81.PubMedCrossRef
29.
go back to reference Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.PubMedCrossRef Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.PubMedCrossRef
31.
go back to reference Pysz I, Jackson PJ, Thurston DE. Introduction to antibody–drug conjugates (ADCs). 1–30. Pysz I, Jackson PJ, Thurston DE. Introduction to antibody–drug conjugates (ADCs). 1–30.
32.
go back to reference Schuurman J, Parren PW. Editorial overview: special section: new concepts in antibody therapeutics: What’s in store for antibody therapy? Curr Opin Immunol. 2016;40:7–13.CrossRef Schuurman J, Parren PW. Editorial overview: special section: new concepts in antibody therapeutics: What’s in store for antibody therapy? Curr Opin Immunol. 2016;40:7–13.CrossRef
36.
go back to reference Hoffmann RM, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018;7:e1395127.PubMedCrossRef Hoffmann RM, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018;7:e1395127.PubMedCrossRef
37.
go back to reference Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol. 2010;14:529–37.PubMedCrossRef Alley SC, Okeley NM, Senter PD. Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol. 2010;14:529–37.PubMedCrossRef
38.
go back to reference Von Minckwitz G, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380:617–28.CrossRef Von Minckwitz G, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380:617–28.CrossRef
39.
go back to reference Modi S, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.PubMedCrossRef Modi S, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.PubMedCrossRef
40.
go back to reference Bardia A, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741–51.PubMedCrossRef Bardia A, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741–51.PubMedCrossRef
41.
go back to reference Van der Weyden C, Pileri S, Feldman A, Whisstock J, Prince H. Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J. 2017;7:e603–e603.PubMedPubMedCentralCrossRef Van der Weyden C, Pileri S, Feldman A, Whisstock J, Prince H. Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J. 2017;7:e603–e603.PubMedPubMedCentralCrossRef
42.
go back to reference Tedder TF, Tuscano J, Sato S, Kehrl JH. Cd22, ab lymphocyte–specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997;15:481–504.PubMedCrossRef Tedder TF, Tuscano J, Sato S, Kehrl JH. Cd22, ab lymphocyte–specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997;15:481–504.PubMedCrossRef
43.
go back to reference Pfeifer M, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia. 2015;29:1578–86.PubMedCrossRef Pfeifer M, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia. 2015;29:1578–86.PubMedCrossRef
44.
go back to reference Scheuer W, et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Can Res. 2009;69:9330–6.CrossRef Scheuer W, et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Can Res. 2009;69:9330–6.CrossRef
45.
go back to reference Kang JC, et al. Engineering a HER2-specific antibody–drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat Biotechnol. 2019;37:523–6.PubMedPubMedCentralCrossRef Kang JC, et al. Engineering a HER2-specific antibody–drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nat Biotechnol. 2019;37:523–6.PubMedPubMedCentralCrossRef
46.
47.
48.
go back to reference Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12:169–76.PubMedPubMedCentralCrossRef Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12:169–76.PubMedPubMedCentralCrossRef
49.
go back to reference Hamblett KJ, et al. AMG 595, an anti-EGFRvIII antibody–drug conjugate, induces potent antitumor activity against EGFRvIII-expressing glioblastoma. Mol Cancer Ther. 2015;14:1614–24.PubMedCrossRef Hamblett KJ, et al. AMG 595, an anti-EGFRvIII antibody–drug conjugate, induces potent antitumor activity against EGFRvIII-expressing glioblastoma. Mol Cancer Ther. 2015;14:1614–24.PubMedCrossRef
50.
go back to reference Li JY, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29:117–29.PubMedCrossRef Li JY, et al. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell. 2016;29:117–29.PubMedCrossRef
52.
go back to reference Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.PubMedCrossRef Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.PubMedCrossRef
54.
go back to reference Su D, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.PubMedCrossRef Su D, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29:1155–67.PubMedCrossRef
55.
go back to reference Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 2020;287:1936–69.PubMedCrossRef Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 2020;287:1936–69.PubMedCrossRef
56.
go back to reference Anami Y, et al. Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nat Commun. 2018;9:1–9.CrossRef Anami Y, et al. Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nat Commun. 2018;9:1–9.CrossRef
57.
go back to reference Xu K, et al. Characterization of the drug-to-antibody ratio distribution for antibody–drug conjugates in plasma/serum. Bioanalysis. 2013;5:1057–71.PubMedCrossRef Xu K, et al. Characterization of the drug-to-antibody ratio distribution for antibody–drug conjugates in plasma/serum. Bioanalysis. 2013;5:1057–71.PubMedCrossRef
58.
go back to reference Chari RV. ACS publications. 2016; 7: 974–976. Chari RV. ACS publications. 2016; 7: 974–976.
59.
go back to reference Singh R, Lambert J, Chari R. Wiley online library. 2014. Singh R, Lambert J, Chari R. Wiley online library. 2014.
60.
go back to reference Kanellos J, Pietersz GA, McKenzie IF. Studies of methotrexate-monoclonal antibody conjugates for immunotherapy. J Natl Cancer Inst. 1985;75:319–32.PubMed Kanellos J, Pietersz GA, McKenzie IF. Studies of methotrexate-monoclonal antibody conjugates for immunotherapy. J Natl Cancer Inst. 1985;75:319–32.PubMed
61.
go back to reference Starling JJ, et al. In vivo antitumor activity of a monoclonal antibody-Vinca alkaloid immunoconjugate directed against a solid tumor membrane antigen characterized by heterogeneous expression and noninternalization of antibody-antigen complexes. Can Res. 1991;51:2965–72. Starling JJ, et al. In vivo antitumor activity of a monoclonal antibody-Vinca alkaloid immunoconjugate directed against a solid tumor membrane antigen characterized by heterogeneous expression and noninternalization of antibody-antigen complexes. Can Res. 1991;51:2965–72.
62.
go back to reference Trail P, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science. 1993;261:212–5.PubMedCrossRef Trail P, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science. 1993;261:212–5.PubMedCrossRef
64.
go back to reference Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.PubMedCrossRef Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.PubMedCrossRef
65.
go back to reference Mach J-P, et al. Tumor localization of radio-labeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation. N Engl J Med. 1980;303:5–10.PubMedCrossRef Mach J-P, et al. Tumor localization of radio-labeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation. N Engl J Med. 1980;303:5–10.PubMedCrossRef
66.
68.
go back to reference Xiao J, Gao M, Fei B, Huang G, Diao Q. Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia. 2020;147:104757.PubMedCrossRef Xiao J, Gao M, Fei B, Huang G, Diao Q. Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia. 2020;147:104757.PubMedCrossRef
70.
go back to reference Sun X, et al. Effects of drug–antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody–maytansinoid conjugates. Bioconjug Chem. 2017;28:1371–81.PubMedCrossRef Sun X, et al. Effects of drug–antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody–maytansinoid conjugates. Bioconjug Chem. 2017;28:1371–81.PubMedCrossRef
71.
go back to reference Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.PubMedPubMedCentralCrossRef Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–46.PubMedPubMedCentralCrossRef
72.
go back to reference Li F, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Can Res. 2016;76:2710–9.CrossRef Li F, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Can Res. 2016;76:2710–9.CrossRef
73.
go back to reference Zhuang C, et al. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883–95.PubMedCrossRef Zhuang C, et al. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883–95.PubMedCrossRef
74.
go back to reference Casi G, Neri D. Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents: miniperspective. J Med Chem. 2015;58:8751–61.PubMedCrossRef Casi G, Neri D. Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents: miniperspective. J Med Chem. 2015;58:8751–61.PubMedCrossRef
76.
go back to reference Cetinbas NM, Monnell T, Lee W, Catcott K, Chin CN, Shaw P et al. 620 Tumor cellintrinsic STING pathway is activated in the presence of cues from immune cells and contributes to the anti-tumor activity of tumor cell-targeted STING agonist antibody-drug conjugates. 2020. Cetinbas NM, Monnell T, Lee W, Catcott K, Chin CN, Shaw P et al. 620 Tumor cellintrinsic STING pathway is activated in the presence of cues from immune cells and contributes to the anti-tumor activity of tumor cell-targeted STING agonist antibody-drug conjugates. 2020.
77.
go back to reference Moyes K, et al. A systemically administered, conditionally active TLR8 agonist for the treatment of HER2-expressing tumors. Can Res. 2019;79:3271.CrossRef Moyes K, et al. A systemically administered, conditionally active TLR8 agonist for the treatment of HER2-expressing tumors. Can Res. 2019;79:3271.CrossRef
78.
go back to reference Leahy MF, Seymour JF, Hicks RJ, Turner JH. Multicenter phase II clinical study of iodine-131–rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24:4418–25.PubMedCrossRef Leahy MF, Seymour JF, Hicks RJ, Turner JH. Multicenter phase II clinical study of iodine-131–rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24:4418–25.PubMedCrossRef
79.
go back to reference Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017;18:e414–23.PubMedCrossRef Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017;18:e414–23.PubMedCrossRef
80.
go back to reference Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood, J Am Soc Hematol. 2013;121(11):2051–8. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood, J Am Soc Hematol. 2013;121(11):2051–8.
81.
go back to reference Maderna A, Leverett CA. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol Pharm. 2015;12:1798–812.PubMedCrossRef Maderna A, Leverett CA. Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates. Mol Pharm. 2015;12:1798–812.PubMedCrossRef
82.
go back to reference Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Nat Cancer Inst. 2019;111:538–49.PubMedCrossRef Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Nat Cancer Inst. 2019;111:538–49.PubMedCrossRef
83.
go back to reference Lopus M, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther. 2010;9:2689–99.PubMedPubMedCentralCrossRef Lopus M, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther. 2010;9:2689–99.PubMedPubMedCentralCrossRef
84.
go back to reference Oroudjev E, et al. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther. 2010;9:2700–13.PubMedPubMedCentralCrossRef Oroudjev E, et al. Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther. 2010;9:2700–13.PubMedPubMedCentralCrossRef
85.
go back to reference Maiese W, et al. Calicheamicins, a novel family of antitumor antibiotics: taxonomy, fermentation and biological properties. J Antibiot. 1989;42:558–63.CrossRef Maiese W, et al. Calicheamicins, a novel family of antitumor antibiotics: taxonomy, fermentation and biological properties. J Antibiot. 1989;42:558–63.CrossRef
86.
go back to reference Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther. 2015;23:493.CrossRef Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther. 2015;23:493.CrossRef
87.
go back to reference Kern JC, et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc. 2016;138:1430–45.PubMedCrossRef Kern JC, et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc. 2016;138:1430–45.PubMedCrossRef
88.
go back to reference Tsimberidou AM, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol. 2006;132:398–409.PubMed Tsimberidou AM, et al. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol. 2006;132:398–409.PubMed
89.
go back to reference Crane EA, Gademann K. Capturing biological activity in natural product fragments by chemical synthesis. Angew Chem Int Ed. 2016;55:3882–902.CrossRef Crane EA, Gademann K. Capturing biological activity in natural product fragments by chemical synthesis. Angew Chem Int Ed. 2016;55:3882–902.CrossRef
90.
go back to reference Elgersma RC, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody–drug conjugate SYD985. Mol Pharm. 2015;12:1813–35.PubMedCrossRef Elgersma RC, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody–drug conjugate SYD985. Mol Pharm. 2015;12:1813–35.PubMedCrossRef
91.
go back to reference Yu L, et al. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget. 2018;9:5197.PubMedCrossRef Yu L, et al. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget. 2018;9:5197.PubMedCrossRef
92.
go back to reference Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65:157–70.PubMedCrossRef Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65:157–70.PubMedCrossRef
93.
go back to reference Govindan SV, et al. Milatuzumab–SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–78.PubMedCrossRef Govindan SV, et al. Milatuzumab–SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther. 2013;12:968–78.PubMedCrossRef
94.
go back to reference Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12:33–43.PubMedCrossRef Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12:33–43.PubMedCrossRef
96.
go back to reference O’Mahony D, Bishop MR. Monoclonal antibody therapy. Front Biosc Landmark. 2006;11:1620–35.CrossRef O’Mahony D, Bishop MR. Monoclonal antibody therapy. Front Biosc Landmark. 2006;11:1620–35.CrossRef
97.
go back to reference Tolcher AW. The evolution of antibody-drug conjugates: a positive inflexion point. Am Soc Clin Oncol Educ Book. 2020;40:127–34.CrossRef Tolcher AW. The evolution of antibody-drug conjugates: a positive inflexion point. Am Soc Clin Oncol Educ Book. 2020;40:127–34.CrossRef
98.
99.
go back to reference Ritchie M, Tchistiakova L, Scott N. Implications of receptormediatedendocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. In MAbs (Vol. 5, No. 1, pp. 13–21). Taylor & Francis. Ritchie M, Tchistiakova L, Scott N. Implications of receptormediatedendocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. In MAbs (Vol. 5, No. 1, pp. 13–21). Taylor & Francis.
100.
go back to reference Kalim M, et al. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates. Drug Des Dev Ther. 2017;11:2265.CrossRef Kalim M, et al. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates. Drug Des Dev Ther. 2017;11:2265.CrossRef
101.
go back to reference Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37:1–12.CrossRef Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37:1–12.CrossRef
103.
go back to reference Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedPubMedCentralCrossRef Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117:1736–42.PubMedPubMedCentralCrossRef
105.
go back to reference Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41:98–107.PubMedCrossRef Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41:98–107.PubMedCrossRef
106.
go back to reference Lu G, et al. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. Nat Commun. 2020;11:1–11.CrossRef Lu G, et al. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. Nat Commun. 2020;11:1–11.CrossRef
107.
go back to reference Giddabasappa A, et al. Biodistribution and targeting of anti-5T4 antibody–drug conjugate using fluorescence molecular tomography. Mol Cancer Ther. 2016;15:2530–40.PubMedCrossRef Giddabasappa A, et al. Biodistribution and targeting of anti-5T4 antibody–drug conjugate using fluorescence molecular tomography. Mol Cancer Ther. 2016;15:2530–40.PubMedCrossRef
109.
go back to reference Tai Y-T, et al. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood J Am Soc Hematol. 2014;123:3128–38. Tai Y-T, et al. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood J Am Soc Hematol. 2014;123:3128–38.
110.
go back to reference Challita-Eid PM, et al. Enfortumab vedotin antibody–drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Can Res. 2016;76:3003–13.CrossRef Challita-Eid PM, et al. Enfortumab vedotin antibody–drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Can Res. 2016;76:3003–13.CrossRef
111.
go back to reference Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett. 2007;255:232–40.PubMedCrossRef Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett. 2007;255:232–40.PubMedCrossRef
112.
go back to reference Jedema I, et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia. 2004;18:316–25.PubMedCrossRef Jedema I, et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia. 2004;18:316–25.PubMedCrossRef
113.
go back to reference Sutherland MSK, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281:10540–7.PubMedCrossRef Sutherland MSK, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281:10540–7.PubMedCrossRef
114.
go back to reference Erickson HK, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Can Res. 2006;66:4426–33.CrossRef Erickson HK, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Can Res. 2006;66:4426–33.CrossRef
115.
go back to reference Amiri-Kordestani L, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20:4436–41.PubMedCrossRef Amiri-Kordestani L, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20:4436–41.PubMedCrossRef
116.
go back to reference Loganzo F, et al. Tumor cells chronically treated with a trastuzumab–maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14:952–63.PubMedCrossRef Loganzo F, et al. Tumor cells chronically treated with a trastuzumab–maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14:952–63.PubMedCrossRef
117.
go back to reference van der Velden VH, et al. High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg®) treatment in acute myeloid leukemia patients. Leukemia. 2004;18:983–8.PubMedCrossRef van der Velden VH, et al. High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg®) treatment in acute myeloid leukemia patients. Leukemia. 2004;18:983–8.PubMedCrossRef
118.
go back to reference Scaltriti M, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99:628–38.PubMedCrossRef Scaltriti M, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99:628–38.PubMedCrossRef
119.
go back to reference Yu M, Ocana A, Tannock IF. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev. 2013;32:211–27.PubMedCrossRef Yu M, Ocana A, Tannock IF. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev. 2013;32:211–27.PubMedCrossRef
120.
go back to reference Kovtun YV, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Can Res. 2010;70:2528–37.CrossRef Kovtun YV, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Can Res. 2010;70:2528–37.CrossRef
121.
go back to reference Matsumoto T, et al. Importance of inducible multidrug resistance 1 expression in HL-60 cells resistant to gemtuzumab ozogamicin. Leuk Lymphoma. 2012;53:1399–405.PubMedCrossRef Matsumoto T, et al. Importance of inducible multidrug resistance 1 expression in HL-60 cells resistant to gemtuzumab ozogamicin. Leuk Lymphoma. 2012;53:1399–405.PubMedCrossRef
122.
go back to reference Sabbaghi M, et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin Cancer Res. 2017;23:7006–19.PubMedCrossRef Sabbaghi M, et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin Cancer Res. 2017;23:7006–19.PubMedCrossRef
123.
124.
go back to reference Haag P, et al. Deficient activation of Bak and Bax confers resistance to gemtuzumab ozogamicin-induced apoptotic cell death in AML. Exp Hematol. 2009;37:755–66.PubMedCrossRef Haag P, et al. Deficient activation of Bak and Bax confers resistance to gemtuzumab ozogamicin-induced apoptotic cell death in AML. Exp Hematol. 2009;37:755–66.PubMedCrossRef
126.
go back to reference Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRef
127.
go back to reference Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody–drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1–6.PubMedCrossRef Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody–drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1–6.PubMedCrossRef
128.
go back to reference Donaghy H. In mAbs. 659–671 (Taylor & Francis). Donaghy H. In mAbs. 659–671 (Taylor & Francis).
129.
go back to reference Sakamoto J, et al. Expression of Lewisa, Lewisb, Lewisx, Lewisy, sialyl-Lewisa, and sialyl-Lewisx blood group antigens in human gastric carcinoma and in normal gastric tissue. Can Res. 1989;49:745–52. Sakamoto J, et al. Expression of Lewisa, Lewisb, Lewisx, Lewisy, sialyl-Lewisa, and sialyl-Lewisx blood group antigens in human gastric carcinoma and in normal gastric tissue. Can Res. 1989;49:745–52.
131.
go back to reference Rosenberg JE, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37:2592.PubMedPubMedCentralCrossRef Rosenberg JE, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37:2592.PubMedPubMedCentralCrossRef
132.
go back to reference Shitara K, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.PubMedCrossRef Shitara K, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419–30.PubMedCrossRef
133.
go back to reference Perez EA, et al. Randomized phase II study of two irinotecan schedules for patients with metastatic breast cancer refractory to an anthracycline, a taxane, or both. J Clin Oncol. 2004;22:2849–55.PubMedCrossRef Perez EA, et al. Randomized phase II study of two irinotecan schedules for patients with metastatic breast cancer refractory to an anthracycline, a taxane, or both. J Clin Oncol. 2004;22:2849–55.PubMedCrossRef
134.
go back to reference Seol H, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25:938–48.PubMedCrossRef Seol H, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25:938–48.PubMedCrossRef
135.
go back to reference Modi S, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low–expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol. 2020;38:1887.PubMedPubMedCentralCrossRef Modi S, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low–expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol. 2020;38:1887.PubMedPubMedCentralCrossRef
136.
go back to reference Hamann PR, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody—calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13:47–58.PubMedCrossRef Hamann PR, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody—calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13:47–58.PubMedCrossRef
137.
go back to reference Alexander W. American Society of Clinical Oncology 2019. Pharm Ther. 2019;44(8):486. Alexander W. American Society of Clinical Oncology 2019. Pharm Ther. 2019;44(8):486.
138.
go back to reference Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43:567–82.PubMedPubMedCentralCrossRef Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43:567–82.PubMedPubMedCentralCrossRef
Metadata
Title
Potential of antibody–drug conjugates (ADCs) for cancer therapy
Authors
Hany E. Marei
Carlo Cenciarelli
Anwarul Hasan
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Cancer Therapy
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02679-8

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine