Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 3/2014

01-03-2014 | Knee

Can TKA design affect the clinical outcome? Comparison between two guided-motion systems

Authors: Raffaele Mugnai, Vitantonio Digennaro, Andrea Ensini, Alberto Leardini, Fabio Catani

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 3/2014

Login to get access

Abstract

Purpose

In a retrospective comparative analysis in patients undergoing primary guided-motion total knee arthroplasty (TKA), the authors have evaluated whether different TKA implant design would influence the clinical and functional outcomes.

Methods

Between 2007 and 2009, 227 computer-assisted primary TKAs were performed in 219 consecutive patients. Patients received one of the two different fixed-bearing guided-motion TKA designs assisted by navigation surgery: the Scorpio Non-Restrictive Geometry (NRG) knee system and the Journey Bi-Cruciate Stabilized (BCS) knee systems.

Results

Data were available for 180 patients (187 knees). No significant differences were observed between the two groups with respect to preoperative demographic characteristics, range of motion (ROM) and radiographic knee alignment. At a mean follow-up of 29 months, the Journey BCS group had higher mean Knee Injury and Osteoarthritis Outcome Score (KOOS) in all subscales and a greater ROM than the Scorpio NRG group. This difference was statistically significant for the KOOS subscales of pain (p = 0.007) and knee-related quality of life (p = 0.045), as well as for postoperative ROM (p = 0.018). Considering the overall complications, 1 patient of Scorpio NRG group (0.5 %) and 5 in Journey BCS (2.7 %) had stiffness. Anterior knee pain was reported in 4 cases of Scorpio NRG group (2.1 %). In the Journey BCS group were observed 2 cases (1.1 %) of frontal plane instability and 1 case (0.5 %) of synovitis pain.

Conclusions

The bearing geometry and kinematic pattern of different guided-motion prosthetic designs can affect the clinical–functional outcome and complications type in primary TKA.

Level of evidence

Clinical study, Level III.
Literature
1.
go back to reference Argenson JN, Parratte S, Ashour A, Komistek RD, Scuderi GR (2008) Patient-reported outcome correlates with knee function after a single-design mobile-bearing TKA. Clin Orthop Relat Res 466:2669–2676PubMedCrossRef Argenson JN, Parratte S, Ashour A, Komistek RD, Scuderi GR (2008) Patient-reported outcome correlates with knee function after a single-design mobile-bearing TKA. Clin Orthop Relat Res 466:2669–2676PubMedCrossRef
2.
go back to reference Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53PubMedCrossRef Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53PubMedCrossRef
3.
go back to reference Blakeney WJ, Khan JK, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty. a randomized trial. J Bone Joint Surg Am 93:1377–1384PubMedCrossRef Blakeney WJ, Khan JK, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty. a randomized trial. J Bone Joint Surg Am 93:1377–1384PubMedCrossRef
4.
go back to reference Boldt JG, Stiehl JB, Hodler J, Zanetti M, Munzinger U (2006) Femoral component rotation and arthrofibrosis following mobile-bearing total knee arthroplasty. Int Orthop 30:420–425PubMedCentralPubMedCrossRef Boldt JG, Stiehl JB, Hodler J, Zanetti M, Munzinger U (2006) Femoral component rotation and arthrofibrosis following mobile-bearing total knee arthroplasty. Int Orthop 30:420–425PubMedCentralPubMedCrossRef
5.
go back to reference Borrione F, Bonnevialle P, Mabit C, Guingand O, Bertin D, Bonnomet F, Denis C, Gagna G (2011) Scorpio single radius total knee arthroplasty. A minimal five-year follow-up multicentric study. Int Orthop 35:1777–1782PubMedCentralPubMedCrossRef Borrione F, Bonnevialle P, Mabit C, Guingand O, Bertin D, Bonnomet F, Denis C, Gagna G (2011) Scorpio single radius total knee arthroplasty. A minimal five-year follow-up multicentric study. Int Orthop 35:1777–1782PubMedCentralPubMedCrossRef
6.
go back to reference Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468:57–63PubMedCrossRef Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468:57–63PubMedCrossRef
7.
go back to reference Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, O’Sullivan JP, O’Donoghue S, Balmer S (1997) Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int 2:150–166PubMedCrossRef Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, O’Sullivan JP, O’Donoghue S, Balmer S (1997) Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int 2:150–166PubMedCrossRef
8.
go back to reference Catani F, Biasca N, Ensini A, Leardini A, Bianchi L, Digennaro V, Giannini S (2008) Alignment deviation between bone resection and final implant positioning in computer-navigated total knee arthroplasty. J Bone Joint Surg Am 90:765–771PubMedCrossRef Catani F, Biasca N, Ensini A, Leardini A, Bianchi L, Digennaro V, Giannini S (2008) Alignment deviation between bone resection and final implant positioning in computer-navigated total knee arthroplasty. J Bone Joint Surg Am 90:765–771PubMedCrossRef
9.
go back to reference Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A (2010) The Mark Coventry Award: Articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res 468:19–28PubMedCrossRef Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A (2010) The Mark Coventry Award: Articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res 468:19–28PubMedCrossRef
10.
go back to reference Choi WC, Lee S, Seong SC, Jung JH, Lee MC (2010) Comparison between standard and high-flexion posterior-stabilized rotating-platform mobile-bearing total knee arthroplasties: a randomized controlled study. J Bone Joint Surg Am 92:2634–2642PubMedCrossRef Choi WC, Lee S, Seong SC, Jung JH, Lee MC (2010) Comparison between standard and high-flexion posterior-stabilized rotating-platform mobile-bearing total knee arthroplasties: a randomized controlled study. J Bone Joint Surg Am 92:2634–2642PubMedCrossRef
11.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRef Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRef
12.
go back to reference Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57PubMedCrossRef Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57PubMedCrossRef
13.
go back to reference Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189PubMedCrossRef Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 428:180–189PubMedCrossRef
14.
go back to reference Edwards JZ, Greene KA, Davis RS, Kovacik MW, Noe DA, Askew MJ (2004) Measuring flexion in knee arthroplasty patients. J Arthroplasty 19:369–372PubMedCrossRef Edwards JZ, Greene KA, Davis RS, Kovacik MW, Noe DA, Askew MJ (2004) Measuring flexion in knee arthroplasty patients. J Arthroplasty 19:369–372PubMedCrossRef
15.
go back to reference Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S (2007) Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res 457:156–162PubMed Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S (2007) Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res 457:156–162PubMed
16.
go back to reference Fukunaga K, Kobayashi A, Minoda Y, Iwaki H, Hashimoto Y, Takaoka K (2009) The incidence of the patellar clunk syndrome in a recently designed mobile-bearing posteriorly stabilised total knee replacement. J Bone Joint Surg Br 91:463–468PubMedCrossRef Fukunaga K, Kobayashi A, Minoda Y, Iwaki H, Hashimoto Y, Takaoka K (2009) The incidence of the patellar clunk syndrome in a recently designed mobile-bearing posteriorly stabilised total knee replacement. J Bone Joint Surg Br 91:463–468PubMedCrossRef
17.
go back to reference Gioe TJ, Glynn J, Sembrano J, Suthers K, Santos ER, Singh J (2009) Mobile and fixed-bearing (all-polyethylene tibial component) total knee arthroplasty designs. A prospective randomized trial. J Bone Joint Surg Am 91:2104–2112PubMedCrossRef Gioe TJ, Glynn J, Sembrano J, Suthers K, Santos ER, Singh J (2009) Mobile and fixed-bearing (all-polyethylene tibial component) total knee arthroplasty designs. A prospective randomized trial. J Bone Joint Surg Am 91:2104–2112PubMedCrossRef
18.
go back to reference Gomez-Barrena E, Fernandez-Garcia C, Fernandez-Bravo A, Cutillas-Ruiz R, Bermejo-Fernandez G (2010) Functional performance with a single-radius femoral design total knee arthroplasty. Clin Orthop Relat Res 468:1214–1220PubMedCrossRef Gomez-Barrena E, Fernandez-Garcia C, Fernandez-Bravo A, Cutillas-Ruiz R, Bermejo-Fernandez G (2010) Functional performance with a single-radius femoral design total knee arthroplasty. Clin Orthop Relat Res 468:1214–1220PubMedCrossRef
19.
go back to reference Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br 53:272–277PubMed Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br 53:272–277PubMed
20.
go back to reference Hoffart HE, Langenstein E, Vasak N (2012) A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br 94:194–199PubMedCrossRef Hoffart HE, Langenstein E, Vasak N (2012) A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br 94:194–199PubMedCrossRef
21.
go back to reference Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268PubMed Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268PubMed
22.
go back to reference Insall JN, Lachiewicz PF, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Joint Surg Am 64:1317–1323PubMed Insall JN, Lachiewicz PF, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Joint Surg Am 64:1317–1323PubMed
24.
go back to reference Ip D, Ko PS, Lee OB, Wu WC, Lam JJ (2004) Natural history and pathogenesis of the patella clunk syndrome. Arch Orthop Trauma Surg 124:597–602PubMedCrossRef Ip D, Ko PS, Lee OB, Wu WC, Lam JJ (2004) Natural history and pathogenesis of the patella clunk syndrome. Arch Orthop Trauma Surg 124:597–602PubMedCrossRef
25.
go back to reference Jenny JY, Boeri C, Picard F, Leitner F (2004) Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system. Comput Aided Surg 9:161–165PubMed Jenny JY, Boeri C, Picard F, Leitner F (2004) Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system. Comput Aided Surg 9:161–165PubMed
26.
go back to reference Kessler O, Durselen L, Banks S, Mannel H, Marin F (2007) Sagittal curvature of total knee replacements predicts in vivo kinematics. Clin Biomech (Bristol, Avon) 22:52–58CrossRef Kessler O, Durselen L, Banks S, Mannel H, Marin F (2007) Sagittal curvature of total knee replacements predicts in vivo kinematics. Clin Biomech (Bristol, Avon) 22:52–58CrossRef
27.
go back to reference Khan MM, Khan MW, Al-Harbi HH, Weening BS, Zalzal PK (2012) Assessing short-term functional outcomes and knee alignment of computer-assisted navigated total knee arthroplasty. J Arthroplasty 27:271–277PubMedCrossRef Khan MM, Khan MW, Al-Harbi HH, Weening BS, Zalzal PK (2012) Assessing short-term functional outcomes and knee alignment of computer-assisted navigated total knee arthroplasty. J Arthroplasty 27:271–277PubMedCrossRef
28.
go back to reference Kim J, Nelson CL, Lotke PA (2004) Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. J Bone Joint Surg Am 86:1479–1484PubMedCrossRef Kim J, Nelson CL, Lotke PA (2004) Stiffness after total knee arthroplasty. Prevalence of the complication and outcomes of revision. J Bone Joint Surg Am 86:1479–1484PubMedCrossRef
29.
go back to reference Lachiewicz PF, Soileau ES (2004) The rates of osteolysis and loosening associated with a modular posterior stabilized knee replacement. Results at five to fourteen years. J Bone Joint Surg Am 86:525–530PubMedCrossRef Lachiewicz PF, Soileau ES (2004) The rates of osteolysis and loosening associated with a modular posterior stabilized knee replacement. Results at five to fourteen years. J Bone Joint Surg Am 86:525–530PubMedCrossRef
30.
go back to reference Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83:1856–1864PubMed Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83:1856–1864PubMed
31.
go back to reference Lingard EA, Katz JN, Wright EA, Sledge CB (2004) Predicting the outcome of total knee arthroplasty. J Bone Joint Surg Am 86:2179–2186PubMed Lingard EA, Katz JN, Wright EA, Sledge CB (2004) Predicting the outcome of total knee arthroplasty. J Bone Joint Surg Am 86:2179–2186PubMed
32.
go back to reference Lonner JH, Jasko JG, Bezwada HP, Nazarian DG, Booth RE Jr (2007) Incidence of patellar clunk with a modern posterior-stabilized knee design. Am J Orthop (Belle Mead NJ) 36:550–553 Lonner JH, Jasko JG, Bezwada HP, Nazarian DG, Booth RE Jr (2007) Incidence of patellar clunk with a modern posterior-stabilized knee design. Am J Orthop (Belle Mead NJ) 36:550–553
33.
go back to reference Maloney WJ, Schmidt R, Sculco TP (2003) Femoral component design and patellar clunk syndrome. Clin Orthop Relat Res 410:199–202PubMedCrossRef Maloney WJ, Schmidt R, Sculco TP (2003) Femoral component design and patellar clunk syndrome. Clin Orthop Relat Res 410:199–202PubMedCrossRef
34.
go back to reference Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498PubMedCrossRef Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498PubMedCrossRef
35.
go back to reference Marx RG, Grimm P, Lillemoe KA, Robertson CM, Ayeni OR, Lyman S, Bogner EA, Pavlov H (2011) Reliability of lower extremity alignment measurement using radiographs and PACS. Knee Surg Sports Traumatol Arthrosc 19:1693–1698PubMedCrossRef Marx RG, Grimm P, Lillemoe KA, Robertson CM, Ayeni OR, Lyman S, Bogner EA, Pavlov H (2011) Reliability of lower extremity alignment measurement using radiographs and PACS. Knee Surg Sports Traumatol Arthrosc 19:1693–1698PubMedCrossRef
36.
go back to reference Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896PubMedCrossRef Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896PubMedCrossRef
37.
go back to reference Monticone M, Ferrante S, Salvaderi S, Rocca B, Totti V, Foti C, Roi GS (2012) Development of the Italian version of the knee injury and osteoarthritis outcome score for patients with knee injuries: cross-cultural adaptation, dimensionality, reliability, and validity. Osteoarthr Cartilage 20:330–335CrossRef Monticone M, Ferrante S, Salvaderi S, Rocca B, Totti V, Foti C, Roi GS (2012) Development of the Italian version of the knee injury and osteoarthritis outcome score for patients with knee injuries: cross-cultural adaptation, dimensionality, reliability, and validity. Osteoarthr Cartilage 20:330–335CrossRef
38.
go back to reference Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61PubMedCrossRef Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61PubMedCrossRef
39.
go back to reference Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177PubMed Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177PubMed
40.
go back to reference Pitto RP, Graydon AJ, Bradley L, Malak SF, Walker CG, Anderson IA (2006) Accuracy of a computer-assisted navigation system for total knee replacement. J Bone Joint Surg Br 88:601–605PubMedCrossRef Pitto RP, Graydon AJ, Bradley L, Malak SF, Walker CG, Anderson IA (2006) Accuracy of a computer-assisted navigation system for total knee replacement. J Bone Joint Surg Br 88:601–605PubMedCrossRef
41.
go back to reference Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedCrossRef Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedCrossRef
42.
go back to reference Roos EM, Toksvig-Larsen S (2003) Knee injury and osteoarthritis outcome score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17PubMedCentralPubMedCrossRef Roos EM, Toksvig-Larsen S (2003) Knee injury and osteoarthritis outcome score (KOOS)—validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes 1:17PubMedCentralPubMedCrossRef
43.
go back to reference Rubinstein RA Jr, DeHaan A (2010) The incidence and results of manipulation after primary total knee arthroplasty. Knee 17:29–32PubMedCrossRef Rubinstein RA Jr, DeHaan A (2010) The incidence and results of manipulation after primary total knee arthroplasty. Knee 17:29–32PubMedCrossRef
44.
go back to reference Seon JK, Park SJ, Lee KB, Li G, Kozanek M, Song EK (2009) Functional comparison of total knee arthroplasty performed with and without a navigation system. Int Orthop 33:987–990PubMedCentralPubMedCrossRef Seon JK, Park SJ, Lee KB, Li G, Kozanek M, Song EK (2009) Functional comparison of total knee arthroplasty performed with and without a navigation system. Int Orthop 33:987–990PubMedCentralPubMedCrossRef
45.
go back to reference Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89:477–480PubMedCrossRef Spencer JM, Chauhan SK, Sloan K, Taylor A, Beaver RJ (2007) Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg Br 89:477–480PubMedCrossRef
46.
go back to reference Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978PubMedCrossRef Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978PubMedCrossRef
47.
go back to reference Tayot O, Ait Si Selmi T, Neyret P (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements. Survivorship analysis, and risk factors for failure. Knee 8:195–205PubMedCrossRef Tayot O, Ait Si Selmi T, Neyret P (2001) Results at 11.5 years of a series of 376 posterior stabilized HLS1 total knee replacements. Survivorship analysis, and risk factors for failure. Knee 8:195–205PubMedCrossRef
48.
go back to reference Thadani PJ, Vince KG, Ortaaslan SG, Blackburn DC, Cudiamat CV (2000) Ten- to 12-year followup of the Insall-Burstein I total knee prosthesis. Clin Orthop Relat Res 380:17–29PubMedCrossRef Thadani PJ, Vince KG, Ortaaslan SG, Blackburn DC, Cudiamat CV (2000) Ten- to 12-year followup of the Insall-Burstein I total knee prosthesis. Clin Orthop Relat Res 380:17–29PubMedCrossRef
49.
go back to reference Victor J, Hoste D (2004) Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 428:131–139PubMedCrossRef Victor J, Hoste D (2004) Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 428:131–139PubMedCrossRef
50.
go back to reference Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM (2005) A biomechanical comparison between the single-axis and multi-axis total knee arthroplasty systems for the stand-to-sit movement. Clin Biomech (Bristol, Avon) 20:428–433CrossRef Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM (2005) A biomechanical comparison between the single-axis and multi-axis total knee arthroplasty systems for the stand-to-sit movement. Clin Biomech (Bristol, Avon) 20:428–433CrossRef
51.
go back to reference Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P (2006) Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee 13:111–117PubMedCrossRef Yercan HS, Sugun TS, Bussiere C, Ait Si Selmi T, Davies A, Neyret P (2006) Stiffness after total knee arthroplasty: prevalence, management and outcomes. Knee 13:111–117PubMedCrossRef
52.
go back to reference Zmistowski B, Restrepo C, Kahl LK, Parvizi J, Sharkey PF (2011) Incidence and reasons for nonrevision reoperation after total knee arthroplasty. Clin Orthop Relat Res 469:138–145PubMedCrossRef Zmistowski B, Restrepo C, Kahl LK, Parvizi J, Sharkey PF (2011) Incidence and reasons for nonrevision reoperation after total knee arthroplasty. Clin Orthop Relat Res 469:138–145PubMedCrossRef
Metadata
Title
Can TKA design affect the clinical outcome? Comparison between two guided-motion systems
Authors
Raffaele Mugnai
Vitantonio Digennaro
Andrea Ensini
Alberto Leardini
Fabio Catani
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 3/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2509-9

Other articles of this Issue 3/2014

Knee Surgery, Sports Traumatology, Arthroscopy 3/2014 Go to the issue