Skip to main content
Top
Published in: Molecular Cancer 1/2006

Open Access 01-12-2006 | Hypothesis

Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?

Authors: Carlos Perez-Plasencia, Alfonso Duenas-Gonzalez

Published in: Molecular Cancer | Issue 1/2006

Login to get access

Abstract

Background

Transcriptome analysis shows that the chemotherapy innate resistance state of tumors is characterized by: poorly dividing tumor cells; an increased DNA repair; an increased drug efflux potential by ABC-transporters; and a dysfunctional ECM. Because chemotherapy resistance involves multiple genes, epigenetic-mediated changes could be the main force responsible of this phenotype. Our hypothesis deals with the potential role of epigenetic therapy for affecting the chemotherapy resistant phenotype of malignant tumors.

Presentation of the hypothesis

Recent studies reveal the involvement of DNA methylation and histone modifications in the reprogramming of the genome of mammalian cells in cancer. In this sense, it can be hypothesized that epigenetic reprogramming can participate in the establishment of an epigenetic mark associated with the chemotherapy resistant phenotype. If this were correct, then it could be expected that agents targeting DNA methylation and histone deacetylation would by reverting the epigenetic mark induce a global expression profile that mirror the observed in untreated resistant cells.

Testing the hypothesis

It is proposed to perform a detailed analysis using all the available databases where the gene expression of primary tumors was analyzed and data correlated with the therapeutic outcome to determine whether a transcriptome profiling of "resistance" is observed. Assuming an epigenetic programming determines at some level the intrinsic resistant phenotype, then a similar pattern of gene expression dictated by an epigenetic mark should also be found in cell acquiring drug resistance. If these expectations are meet, then it should be further investigated at the genomic level whether these phenotypes are associated to certain patterns of DNA methylation and chromatin modification. Once confirmed the existence of an epigenetic mark associated to either the intrinsic or acquired chemotherapy resistant phenotype, then a causal association should be investigated. These preclinical findings should also be tested in a clinical setting.

Implications of the hypothesis

Our hypothesis on the ability of epigenetic therapy to revert the epigenetic changes leading to a transcritome profile that defines the resistant state will eventually be a more rational and effective way to treat malignant tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lage H: ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003, 22: 188-199. 10.1016/S0924-8579(03)00203-6CrossRefPubMed Lage H: ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003, 22: 188-199. 10.1016/S0924-8579(03)00203-6CrossRefPubMed
2.
go back to reference Townsend DM, Tew KD: The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003, 22: 7369-7375. 10.1038/sj.onc.1206940CrossRefPubMed Townsend DM, Tew KD: The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003, 22: 7369-7375. 10.1038/sj.onc.1206940CrossRefPubMed
3.
go back to reference Mashima T, Tsuruo T: Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat. 2005, 8: 339-343. 10.1016/j.drup.2005.11.001CrossRefPubMed Mashima T, Tsuruo T: Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat. 2005, 8: 339-343. 10.1016/j.drup.2005.11.001CrossRefPubMed
4.
go back to reference Oza AM: Clinical development of P glycoprotein modulators in oncology. Novartis Found Symp. 2002, 243: 103-115.CrossRefPubMed Oza AM: Clinical development of P glycoprotein modulators in oncology. Novartis Found Symp. 2002, 243: 103-115.CrossRefPubMed
5.
go back to reference Choi CH: ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005, 5: 30- 10.1186/1475-2867-5-30PubMedCentralCrossRefPubMed Choi CH: ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005, 5: 30- 10.1186/1475-2867-5-30PubMedCentralCrossRefPubMed
6.
go back to reference Weinstein IB: Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis. 2000, 21: 857-864. 10.1093/carcin/21.5.857CrossRefPubMed Weinstein IB: Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis. 2000, 21: 857-864. 10.1093/carcin/21.5.857CrossRefPubMed
7.
go back to reference Baylin SB, Ohm JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?. Nat Rev Cancer. 2006, 6: 107-116. 10.1038/nrc1799CrossRefPubMed Baylin SB, Ohm JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?. Nat Rev Cancer. 2006, 6: 107-116. 10.1038/nrc1799CrossRefPubMed
8.
go back to reference Yap Y, Zhang X, Ling MT, Wang X, Wong YC, Danchin A: Classification between normal and tumor tissues based on the pair-wise gene expression ratio. BMC Cancer. 2004, 4: 72- 10.1186/1471-2407-4-72PubMedCentralCrossRefPubMed Yap Y, Zhang X, Ling MT, Wang X, Wong YC, Danchin A: Classification between normal and tumor tissues based on the pair-wise gene expression ratio. BMC Cancer. 2004, 4: 72- 10.1186/1471-2407-4-72PubMedCentralCrossRefPubMed
9.
go back to reference Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics. 2005, 6: 265- 10.1186/1471-2105-6-265PubMedCentralCrossRefPubMed Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics. 2005, 6: 265- 10.1186/1471-2105-6-265PubMedCentralCrossRefPubMed
10.
go back to reference Gabriele L, Moretti F, Pierotti MA, Marincola FM, Foà R, Belardelli FM: The use of microarray technologies in clinical oncology. J Transl Med. 2006, 4: 8- 10.1186/1479-5876-4-8PubMedCentralCrossRefPubMed Gabriele L, Moretti F, Pierotti MA, Marincola FM, Foà R, Belardelli FM: The use of microarray technologies in clinical oncology. J Transl Med. 2006, 4: 8- 10.1186/1479-5876-4-8PubMedCentralCrossRefPubMed
11.
go back to reference Graudens E, Boulanger V, Mollard C, Mariage-Samson R, Barlet X, Gremy G, Couillault C, Lajemi M, Piatier-Tonneau D, Zaborski P, Eveno E, Auffray C, Imbeaud S: Deciphering cellular states of innate tumor drug responses. Genome Biol. 2006, 7: R19- 10.1186/gb-2006-7-3-r19PubMedCentralCrossRefPubMed Graudens E, Boulanger V, Mollard C, Mariage-Samson R, Barlet X, Gremy G, Couillault C, Lajemi M, Piatier-Tonneau D, Zaborski P, Eveno E, Auffray C, Imbeaud S: Deciphering cellular states of innate tumor drug responses. Genome Biol. 2006, 7: R19- 10.1186/gb-2006-7-3-r19PubMedCentralCrossRefPubMed
12.
go back to reference Di Nicolantonio F, Mercer SJ, Knight LA, Gabriel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgins B, Lamont A, Gulliford T, Hurren J, Yiangou C, Cree IA: Cancer cell adaptation to chemotherapy. BMC Cancer. 2005, 5: 78- 10.1186/1471-2407-5-78PubMedCentralCrossRefPubMed Di Nicolantonio F, Mercer SJ, Knight LA, Gabriel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgins B, Lamont A, Gulliford T, Hurren J, Yiangou C, Cree IA: Cancer cell adaptation to chemotherapy. BMC Cancer. 2005, 5: 78- 10.1186/1471-2407-5-78PubMedCentralCrossRefPubMed
13.
go back to reference Glasspool RM, Teodoridis JM, Brown R: Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 2006, 94: 1087-1092. 10.1038/sj.bjc.6603024PubMedCentralCrossRefPubMed Glasspool RM, Teodoridis JM, Brown R: Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 2006, 94: 1087-1092. 10.1038/sj.bjc.6603024PubMedCentralCrossRefPubMed
14.
go back to reference Baker EK, El-Osta A: The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res. 2003, 290: 177-194. 10.1016/S0014-4827(03)00342-2CrossRefPubMed Baker EK, El-Osta A: The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res. 2003, 290: 177-194. 10.1016/S0014-4827(03)00342-2CrossRefPubMed
15.
go back to reference Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047CrossRefPubMed Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-107. 10.1038/5047CrossRefPubMed
16.
go back to reference Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH: Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 2003, 63: 2164-2171.PubMed Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH: Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 2003, 63: 2164-2171.PubMed
17.
go back to reference Li L, Shi H, Yiannoutsos C, Huang TH, Nephew KP: Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system. J Comput Biol. 2005, 12: 370-390. 10.1089/cmb.2005.12.370CrossRefPubMed Li L, Shi H, Yiannoutsos C, Huang TH, Nephew KP: Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system. J Comput Biol. 2005, 12: 370-390. 10.1089/cmb.2005.12.370CrossRefPubMed
18.
go back to reference Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, Cabrera G, Duenas-Gonzalez A: Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 2006, 6: 2- 10.1186/1475-2867-6-2PubMedCentralCrossRefPubMed Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, Cabrera G, Duenas-Gonzalez A: Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 2006, 6: 2- 10.1186/1475-2867-6-2PubMedCentralCrossRefPubMed
19.
go back to reference Hsiao HL, Wang WS, Chen PM, Su Y: Overexpression of thymosin {beta}-4 renders SW480 colon carcinoma cells more resistant to apoptosis triggered by FasL and two topoisomerase II inhibitors via downregulating Fas and upregulating Survivin expression, respectively. Carcinogenesis. 2006, 27: 936-944. 10.1093/carcin/bgi316CrossRefPubMed Hsiao HL, Wang WS, Chen PM, Su Y: Overexpression of thymosin {beta}-4 renders SW480 colon carcinoma cells more resistant to apoptosis triggered by FasL and two topoisomerase II inhibitors via downregulating Fas and upregulating Survivin expression, respectively. Carcinogenesis. 2006, 27: 936-944. 10.1093/carcin/bgi316CrossRefPubMed
20.
go back to reference Sergent C, Franco N, Chapusot C, Lizard-Nacol S, Isambert N, Correia M, Chauffert B: Human colon cancer cells surviving high doses of cisplatin or oxaliplatin in vitro are not defective in DNA mismatch repair proteins. Cancer Chemother Pharmacol. 2002, 49: 445-452. 10.1007/s00280-002-0450-6CrossRefPubMed Sergent C, Franco N, Chapusot C, Lizard-Nacol S, Isambert N, Correia M, Chauffert B: Human colon cancer cells surviving high doses of cisplatin or oxaliplatin in vitro are not defective in DNA mismatch repair proteins. Cancer Chemother Pharmacol. 2002, 49: 445-452. 10.1007/s00280-002-0450-6CrossRefPubMed
21.
go back to reference Liu L, Taverna P, Whitacre CM, Chatterjee S, Gerson SL: Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin Cancer Res. 1999, 5: 2908-2917.PubMed Liu L, Taverna P, Whitacre CM, Chatterjee S, Gerson SL: Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin Cancer Res. 1999, 5: 2908-2917.PubMed
22.
go back to reference Feinberg AP, Cui H, Ohlsson R: DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002, 12: 389-398. 10.1016/S1044-579X(02)00059-7CrossRefPubMed Feinberg AP, Cui H, Ohlsson R: DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002, 12: 389-398. 10.1016/S1044-579X(02)00059-7CrossRefPubMed
23.
24.
go back to reference Fruhwald MC, Plass C: Global and gene-specific methylation patterns in cancer: aspects of tumor biology and clinical potential. Mol Genet Metab. 2002, 75: 1-16. 10.1006/mgme.2001.3265CrossRefPubMed Fruhwald MC, Plass C: Global and gene-specific methylation patterns in cancer: aspects of tumor biology and clinical potential. Mol Genet Metab. 2002, 75: 1-16. 10.1006/mgme.2001.3265CrossRefPubMed
25.
go back to reference Neumeister P, Albanese C, Balent B, Greally J, Pestell RG: Senescence and epigenetic dysregulation in cancer. Int J Biochem Cell Biol. 2002, 34: 1475-1490. 10.1016/S1357-2725(02)00079-1CrossRefPubMed Neumeister P, Albanese C, Balent B, Greally J, Pestell RG: Senescence and epigenetic dysregulation in cancer. Int J Biochem Cell Biol. 2002, 34: 1475-1490. 10.1016/S1357-2725(02)00079-1CrossRefPubMed
26.
go back to reference Tycko B: Genetic and epigenetic mosaicism in cancer precursor tissues. Ann N Y Acad Sci. 2003, 983: 43-54.CrossRefPubMed Tycko B: Genetic and epigenetic mosaicism in cancer precursor tissues. Ann N Y Acad Sci. 2003, 983: 43-54.CrossRefPubMed
27.
go back to reference Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J: BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33: W460-464. 10.1093/nar/gki456PubMedCentralCrossRefPubMed Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J: BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33: W460-464. 10.1093/nar/gki456PubMedCentralCrossRefPubMed
29.
go back to reference Teodoridis JM, Strathdee G, Brown R: Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat. 2004, 7: 267-278. 10.1016/j.drup.2004.06.005CrossRefPubMed Teodoridis JM, Strathdee G, Brown R: Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat. 2004, 7: 267-278. 10.1016/j.drup.2004.06.005CrossRefPubMed
30.
go back to reference Baker EK, Johnstone RW, Zalcberg JR, El-Osta A: Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene. 2005, 24: 8061-8075. 10.1038/sj.onc.1208955CrossRefPubMed Baker EK, Johnstone RW, Zalcberg JR, El-Osta A: Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene. 2005, 24: 8061-8075. 10.1038/sj.onc.1208955CrossRefPubMed
31.
go back to reference Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H: Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res. 2005, 65: 10024-10031. 10.1158/0008-5472.CAN-05-1944CrossRefPubMed Tian K, Jurukovski V, Wang XP, Kaplan MH, Xu H: Epigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells. Cancer Res. 2005, 65: 10024-10031. 10.1158/0008-5472.CAN-05-1944CrossRefPubMed
32.
go back to reference Nyce JW: Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res. 1997, 386: 153-161. 10.1016/S1383-5742(96)00051-8CrossRefPubMed Nyce JW: Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res. 1997, 386: 153-161. 10.1016/S1383-5742(96)00051-8CrossRefPubMed
33.
go back to reference Nyce J, Leonard S, Canupp D, Schulz S, Wong S: Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance. Proc Natl Acad Sci USA. 1993, 90: 2960-2964. 10.1073/pnas.90.7.2960PubMedCentralCrossRefPubMed Nyce J, Leonard S, Canupp D, Schulz S, Wong S: Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance. Proc Natl Acad Sci USA. 1993, 90: 2960-2964. 10.1073/pnas.90.7.2960PubMedCentralCrossRefPubMed
34.
go back to reference Nyce J: Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res. 1989, 49: 5829-5836.PubMed Nyce J: Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res. 1989, 49: 5829-5836.PubMed
35.
go back to reference Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R: Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000, 60: 6039-6044.PubMed Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R: Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000, 60: 6039-6044.PubMed
36.
go back to reference Qiu YY, Mirkin BL, Dwivedi RS: Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells. Cancer Detect Prev. 2005, 29: 456-463. 10.1016/j.cdp.2005.05.004CrossRefPubMed Qiu YY, Mirkin BL, Dwivedi RS: Inhibition of DNA methyltransferase reverses cisplatin induced drug resistance in murine neuroblastoma cells. Cancer Detect Prev. 2005, 29: 456-463. 10.1016/j.cdp.2005.05.004CrossRefPubMed
37.
go back to reference Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003, 63: 7291-7300.PubMed Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003, 63: 7291-7300.PubMed
38.
go back to reference Sonnemann J, Kumar KS, Heesch S, Muller C, Hartwig C, Maass M, Bader P, Beck JF: Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells. Int J Oncol. 2006, 28: 755-766.PubMed Sonnemann J, Kumar KS, Heesch S, Muller C, Hartwig C, Maass M, Bader P, Beck JF: Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells. Int J Oncol. 2006, 28: 755-766.PubMed
39.
go back to reference Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006, 5: 37-50. 10.1038/nrd1930CrossRefPubMed Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006, 5: 37-50. 10.1038/nrd1930CrossRefPubMed
40.
go back to reference Cernilogar FM, Orlando V: Epigenome programming by Polycomb and Trithorax proteins. Biochem Cell Biol. 2005, 83: 322-331. 10.1139/o05-040CrossRefPubMed Cernilogar FM, Orlando V: Epigenome programming by Polycomb and Trithorax proteins. Biochem Cell Biol. 2005, 83: 322-331. 10.1139/o05-040CrossRefPubMed
Metadata
Title
Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?
Authors
Carlos Perez-Plasencia
Alfonso Duenas-Gonzalez
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2006
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-5-27

Other articles of this Issue 1/2006

Molecular Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine