Skip to main content
Top
Published in: Respiratory Research 1/2016

Open Access 01-12-2016 | Research

Can roflumilast, a phosphodiesterase-4 inhibitor, improve clinical outcomes in patients with moderate-to-severe chronic obstructive pulmonary disease? A meta-analysis

Authors: Jian Luo, Ke Wang, Dan Liu, Bin-Miao Liang, Chun-Tao Liu

Published in: Respiratory Research | Issue 1/2016

Login to get access

Abstract

Background

Effects of roflumilast on lung function, symptoms, acute exacerbation and adverse events in patients with chronic obstructive pulmonary disease (COPD) are controversial. We aimed to further clarify the efficacy and safety of roflumilast in treatment of moderate-to-severe COPD.

Methods

From 1946 to November 2015, we searched the Pubmed, Embase, Medline, Cochrane Central Register of Controlled Trials, ISI Web of Science and American College of Physician using “roflumilast” and “chronic obstructive pulmonary disease” or “COPD”. Randomized controlled trials that reported forced expiratory volume in one second (FEV1), forced vital capacity (FVC), transition dyspnea index (TDI), St George’s Respiratory Questionnaire (SGRQ), and incidence of COPD exacerbations and adverse events were eligible. We conducted the heterogeneities test and sensitivity analysis, and random-effects or fixed-effects model was applied to calculate risk ratio (RR) and mean difference (MD) for dichotomous and continuous data respectively. Cochrane systematic review software, Review Manager (RevMan), was used to test the hypothesis by Mann-Whitney U-test.

Results

Thirteen trials with a total of 14,563 patients were pooled in our final studies. Except for SGRQ (I 2 = 63 %, χ 2 = 1.71, P = 0.07) and adverse events (I 2 = 94 %, χ 2 = 0.03, P < 0.001), we did not find statistical heterogeneity in outcome measures. The pooled MD of pre- and post-bronchodilator FEV1 was 54.60 (95 % confidence interval (CI) 46.02 ~ 63.18) and 57.86 (95 % CI 49.80 ~ 65.91), and both showed significant improvement in patients with roflumilast (z = 12.47, P <0.001; z = 14.07, P < 0.001), so did in FVC (MD 90.37, 95 % CI 73.95 ~ 106.78, z = 10.79, P < 0.001). Significant alleviation of TDI (MD 0.30, 95 % CI 0.14 ~ 0.46, z = 3.67, P < 0.001) and decrease of acute exacerbation (RR 0.86, 95 % CI 0.81 ~ 0.91, z = 5.54, P < 0.001) were also identified in treatment of roflumilast, but without significant difference in SGRQ (MD −1.30, 95 % CI −3.16 ~ 0.56, z = 1.37, P = 0.17). Moreover, roflumilast significantly increased the incidence of adverse events compared with placebo (RR 1.31, 95 % CI 1.16 ~ 1.47, z = 4.32, P < 0.001).

Conclusions

Roflumilast can be considered as an alternative therapy in selective patients with moderate-to-severe COPD.
Literature
1.
go back to reference Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (updated 2015). Global Initiative for Chronic Obstructive Lung Disease (GLOD). 2015. www.goldcopd.org. Accessed on February 18, 2015. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (updated 2015). Global Initiative for Chronic Obstructive Lung Disease (GLOD). 2015. www.​goldcopd.​org. Accessed on February 18, 2015.
2.
go back to reference Menezes AM, Perez-Padilla R, Jardim JR, Muiño A, Lopez MV, Valdivia G, et al. Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study): a prevalence study. Lancet. 2005;366:1875–81.CrossRefPubMed Menezes AM, Perez-Padilla R, Jardim JR, Muiño A, Lopez MV, Valdivia G, et al. Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study): a prevalence study. Lancet. 2005;366:1875–81.CrossRefPubMed
3.
go back to reference Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.CrossRefPubMed Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.CrossRefPubMed
5.
go back to reference Kessler R, Ståhl E, Vogelmeier C, Haughney J, Trudeau E, Löfdahl CG, et al. Patient understanding, detection, and experience of COPD exacerbations: an observational, interview-based study. Chest. 2006;130:133–42.CrossRefPubMed Kessler R, Ståhl E, Vogelmeier C, Haughney J, Trudeau E, Löfdahl CG, et al. Patient understanding, detection, and experience of COPD exacerbations: an observational, interview-based study. Chest. 2006;130:133–42.CrossRefPubMed
6.
go back to reference Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57:847–52.PubMedCentralCrossRefPubMed Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57:847–52.PubMedCentralCrossRefPubMed
7.
go back to reference Connors Jr AF, Dawson NV, Thomas C, Harrell Jr FE, Desbiens N, Fulkerson WJ, et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care Med. 1996;154:959–67.CrossRefPubMed Connors Jr AF, Dawson NV, Thomas C, Harrell Jr FE, Desbiens N, Fulkerson WJ, et al. Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care Med. 1996;154:959–67.CrossRefPubMed
8.
go back to reference Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.CrossRefPubMed Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.CrossRefPubMed
9.
go back to reference Torphy TJ. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med. 1998;157:351–70.CrossRefPubMed Torphy TJ. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med. 1998;157:351–70.CrossRefPubMed
10.
go back to reference Pinner NA, Hamilton LA, Hughes A. Roflumilast: a phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther. 2012;34:56–66.CrossRefPubMed Pinner NA, Hamilton LA, Hughes A. Roflumilast: a phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther. 2012;34:56–66.CrossRefPubMed
11.
go back to reference Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbröker D, Bethke TD. Roflumilast--an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366:563–71.CrossRefPubMed Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbröker D, Bethke TD. Roflumilast--an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366:563–71.CrossRefPubMed
12.
go back to reference Yan JH, Gu WJ, Pan L. Efficacy and safety of roflumilast in patients with stable chronic obstructive pulmonary disease: a meta-analysis. Pulm Pharmacol Ther. 2014;27:83–9.CrossRefPubMed Yan JH, Gu WJ, Pan L. Efficacy and safety of roflumilast in patients with stable chronic obstructive pulmonary disease: a meta-analysis. Pulm Pharmacol Ther. 2014;27:83–9.CrossRefPubMed
13.
go back to reference Fabbri LM, Calverley PM, Izquierdo-Alonso JL, Bundschuh DS, Brose M, Martinez FJ, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374:695–703.CrossRefPubMed Fabbri LM, Calverley PM, Izquierdo-Alonso JL, Bundschuh DS, Brose M, Martinez FJ, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374:695–703.CrossRefPubMed
14.
go back to reference Wells JM, Jackson PL, Viera L, Bhatt SP, Gautney J, Handley G, et al. A randomized, placebo-controlled trial of roflumilast. Effect on proline-glycine-proline and neutrophilic inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192:934–42.CrossRefPubMed Wells JM, Jackson PL, Viera L, Bhatt SP, Gautney J, Handley G, et al. A randomized, placebo-controlled trial of roflumilast. Effect on proline-glycine-proline and neutrophilic inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192:934–42.CrossRefPubMed
15.
go back to reference Higgins JP, Green S. eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. Oxford: The Cochrane Collaboration, 2011. Updated March 2011. www.cochrane-handbook.org. Accessed 20 March 2011 Higgins JP, Green S. eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. Oxford: The Cochrane Collaboration, 2011. Updated March 2011. www.​cochrane-handbook.​org. Accessed 20 March 2011
16.
go back to reference Bredenbroker D, Syed J, Leichtl S, Rathgeb F, Wurst W. Roflumilast, a new orally active phosphodiesterase 4 inhibitor, is effective in the treatment of chronic obstructive pulmonary disease. Eur Respir J. 2002;20:374S. Bredenbroker D, Syed J, Leichtl S, Rathgeb F, Wurst W. Roflumilast, a new orally active phosphodiesterase 4 inhibitor, is effective in the treatment of chronic obstructive pulmonary disease. Eur Respir J. 2002;20:374S.
17.
go back to reference Boszormenyi-Nagy G, Pieters WR, Steffen H, Timar M, Vinkler I, Teichmann P, et al. The effect of roflumilast treatment and subsequent withdrawal in patients with COPD. Am J Respir Crit Care Med. 2005;169:A544. Boszormenyi-Nagy G, Pieters WR, Steffen H, Timar M, Vinkler I, Teichmann P, et al. The effect of roflumilast treatment and subsequent withdrawal in patients with COPD. Am J Respir Crit Care Med. 2005;169:A544.
18.
go back to reference Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176:154–61.CrossRefPubMed Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176:154–61.CrossRefPubMed
19.
go back to reference Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374:685–94.CrossRefPubMed Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374:685–94.CrossRefPubMed
20.
go back to reference Lee SD, Hui DS, Mahayiddin AA, Roa Jr CC, Kwa KH, Goehring UM, et al. Roflumilast in Asian patients with COPD: a randomized placebo-controlled trial. Respirology. 2011;16:1249–57.CrossRefPubMed Lee SD, Hui DS, Mahayiddin AA, Roa Jr CC, Kwa KH, Goehring UM, et al. Roflumilast in Asian patients with COPD: a randomized placebo-controlled trial. Respirology. 2011;16:1249–57.CrossRefPubMed
21.
go back to reference Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast--the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18.PubMedCentralCrossRefPubMed Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast--the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18.PubMedCentralCrossRefPubMed
22.
go back to reference Ferguson GT, Rennard SI, Hanania NA, Zhu H, Siddiqui S, Sacks H, et al. Roflumilast treatment in COPD patients taking a fixed-dose combination of long-acting beta2 agonist (LABA) and inhaled corticosteroid (ICS): Rationale and design of a prospective randomized controlled trial. Am J Respir Crit Care Med. 2012;185. Ferguson GT, Rennard SI, Hanania NA, Zhu H, Siddiqui S, Sacks H, et al. Roflumilast treatment in COPD patients taking a fixed-dose combination of long-acting beta2 agonist (LABA) and inhaled corticosteroid (ICS): Rationale and design of a prospective randomized controlled trial. Am J Respir Crit Care Med. 2012;185.
23.
go back to reference O’Donnell DE, Bredenbröker D, Brose M, Webb KA. Physiological effects of roflumilast at rest and during exercise in COPD. Eur Respir J. 2012;39:1104–12.CrossRefPubMed O’Donnell DE, Bredenbröker D, Brose M, Webb KA. Physiological effects of roflumilast at rest and during exercise in COPD. Eur Respir J. 2012;39:1104–12.CrossRefPubMed
24.
go back to reference Zheng J, Yang J, Zhou X, Zhao L, Hui F, Wang H, et al. Roflumilast for the treatment of COPD in an Asian population: a randomized, double-blind, parallel-group study. Chest. 2014;145:44–52.CrossRefPubMed Zheng J, Yang J, Zhou X, Zhao L, Hui F, Wang H, et al. Roflumilast for the treatment of COPD in an Asian population: a randomized, double-blind, parallel-group study. Chest. 2014;145:44–52.CrossRefPubMed
25.
go back to reference Martinez FJ, Calverley PM, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385:857–66.CrossRefPubMed Martinez FJ, Calverley PM, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385:857–66.CrossRefPubMed
26.
go back to reference Oba Y, Lone NA. Efficacy and safety of roflumilast in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis. 2013;7:13–24.CrossRefPubMed Oba Y, Lone NA. Efficacy and safety of roflumilast in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis. 2013;7:13–24.CrossRefPubMed
27.
go back to reference Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;11, CD002309.PubMed Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;11, CD002309.PubMed
28.
go back to reference Tashkin DP, Celli B, Decramer M, Liu D, Burkhart D, Cassino C, et al. Bronchodilator responsiveness in patients with COPD. Eur Respir J. 2008;31(4):742–50.CrossRefPubMed Tashkin DP, Celli B, Decramer M, Liu D, Burkhart D, Cassino C, et al. Bronchodilator responsiveness in patients with COPD. Eur Respir J. 2008;31(4):742–50.CrossRefPubMed
29.
go back to reference Mahler DA, Witek Jr TJ. The MCID of the transition dyspnea index is a total score of one unit. COPD. 2005;2:99–103.CrossRefPubMed Mahler DA, Witek Jr TJ. The MCID of the transition dyspnea index is a total score of one unit. COPD. 2005;2:99–103.CrossRefPubMed
30.
go back to reference Donohue JF, Fogarty C, Lötvall J, Mahler DA, Worth H, Yorgancioglu A, et al. Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium. Am J Respir Crit Care Med. 2010;182:155–62.CrossRefPubMed Donohue JF, Fogarty C, Lötvall J, Mahler DA, Worth H, Yorgancioglu A, et al. Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium. Am J Respir Crit Care Med. 2010;182:155–62.CrossRefPubMed
31.
go back to reference Jones PW, Singh D, Bateman ED, Agusti A, Lamarca R, de Miquel G, et al. Efficacy and safety of twice-daily aclidinium bromide in COPD patients: the ATTAIN study. Eur Respir J. 2012;40:830–6.CrossRefPubMed Jones PW, Singh D, Bateman ED, Agusti A, Lamarca R, de Miquel G, et al. Efficacy and safety of twice-daily aclidinium bromide in COPD patients: the ATTAIN study. Eur Respir J. 2012;40:830–6.CrossRefPubMed
32.
go back to reference Vogelmeier CF, Bateman ED, Pallante J, Alagappan VK, D’Andrea P, Chen H, et al. Efficacy and safety of once-daily QVA149 compared with twice-daily salmeterol-fluticasone in patients with chronic obstructive pulmonary disease (ILLUMINATE): a randomised, double-blind, parallel group study. Lancet Respir Med. 2013;1:51–60.CrossRefPubMed Vogelmeier CF, Bateman ED, Pallante J, Alagappan VK, D’Andrea P, Chen H, et al. Efficacy and safety of once-daily QVA149 compared with twice-daily salmeterol-fluticasone in patients with chronic obstructive pulmonary disease (ILLUMINATE): a randomised, double-blind, parallel group study. Lancet Respir Med. 2013;1:51–60.CrossRefPubMed
33.
go back to reference Soriano JB, Visick GT, Muellerova H, Payvandi N, Hansell AL. Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest. 2005;128:2099–107.CrossRefPubMed Soriano JB, Visick GT, Muellerova H, Payvandi N, Hansell AL. Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest. 2005;128:2099–107.CrossRefPubMed
Metadata
Title
Can roflumilast, a phosphodiesterase-4 inhibitor, improve clinical outcomes in patients with moderate-to-severe chronic obstructive pulmonary disease? A meta-analysis
Authors
Jian Luo
Ke Wang
Dan Liu
Bin-Miao Liang
Chun-Tao Liu
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2016
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-016-0330-y

Other articles of this Issue 1/2016

Respiratory Research 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.