Skip to main content
Top
Published in: Brain Structure and Function 1/2017

01-01-2017 | Short Communication

Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex

Authors: Márton Rózsa, Judith Baka, Sándor Bordé, Balázs Rózsa, Gergely Katona, Gábor Tamás

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

Communication between individual GABAergic cells and their target neurons is mediated by synapses and, in the case of neurogliaform cells (NGFCs), by unitary volume transmission. Effects of non-synaptic volume transmission might involve non-neuronal targets, and astrocytes not receiving GABAergic synapses but expressing GABA receptors are suitable for evaluating this hypothesis. Testing several cortical interneuron types in slices of the rat cerebral cortex, we show selective unitary transmission from NGFCs to astrocytes with an early, GABAA receptor and GABA transporter-mediated component and a late component that results from the activation of GABA transporters and neuronal GABAB receptors. We could not detect Ca2+ influx in astrocytes associated with unitary GABAergic responses. Our experiments identify a presynaptic cell-type-specific, GABA-mediated communication pathway from individual neurons to astrocytes, assigning a role for unitary volume transmission in the control of ionic and neurotransmitter homeostasis.
Literature
go back to reference Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22:1042–1053PubMed Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22:1042–1053PubMed
go back to reference Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174CrossRefPubMedPubMedCentral Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174CrossRefPubMedPubMedCentral
go back to reference Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845–889 Dy JG, Brodley CE (2004) Feature selection for unsupervised learning. J Mach Learn Res 5:845–889
go back to reference Fritschy J-M, Sidler C, Parpan F et al (2004) Independent maturation of the GABA(B) receptor subunits GABA(B1) and GABA(B2) during postnatal development in rodent brain. J Comp Neurol 477:235–252. doi:10.1002/cne.20188 CrossRefPubMed Fritschy J-M, Sidler C, Parpan F et al (2004) Independent maturation of the GABA(B) receptor subunits GABA(B1) and GABA(B2) during postnatal development in rodent brain. J Comp Neurol 477:235–252. doi:10.​1002/​cne.​20188 CrossRefPubMed
go back to reference Grosche J, Matyash V, Möller T et al (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143. doi:10.1038/5692 CrossRefPubMed Grosche J, Matyash V, Möller T et al (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143. doi:10.​1038/​5692 CrossRefPubMed
go back to reference Kaila K, Lamsa K, Smirnov S et al (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672PubMed Kaila K, Lamsa K, Smirnov S et al (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672PubMed
go back to reference López-Bendito G, Shigemoto R, Kulik A et al (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14:836–848. doi:10.1002/hipo.10221 CrossRefPubMed López-Bendito G, Shigemoto R, Kulik A et al (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14:836–848. doi:10.​1002/​hipo.​10221 CrossRefPubMed
go back to reference Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc B Biol Sci 369:20130609. doi:10.1098/rstb.2013.0609 CrossRef Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc B Biol Sci 369:20130609. doi:10.​1098/​rstb.​2013.​0609 CrossRef
go back to reference Martin SC, Steiger JL, Gravielle MC et al (2004) Differential expression of gamma-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons. J Comp Neurol 473:16–29. doi:10.1002/cne.20094 CrossRefPubMed Martin SC, Steiger JL, Gravielle MC et al (2004) Differential expression of gamma-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons. J Comp Neurol 473:16–29. doi:10.​1002/​cne.​20094 CrossRefPubMed
go back to reference Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142–150CrossRefPubMed Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142–150CrossRefPubMed
Metadata
Title
Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex
Authors
Márton Rózsa
Judith Baka
Sándor Bordé
Balázs Rózsa
Gergely Katona
Gábor Tamás
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1166-9

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue