Skip to main content
Top
Published in: Urolithiasis 5/2018

01-10-2018 | Original Paper

Calcium receptor signaling and citrate transport

Authors: Ryan W. Walker, Shijia Zhang, Joycelynn A. Coleman-Barnett, L. Lee Hamm, Kathleen S. Hering-Smith

Published in: Urolithiasis | Issue 5/2018

Login to get access

Abstract

The calcium sensing receptor (CaSR) in the distal nephron decreases the propensity for calcium stones. Here we investigate if the apical CaSR in the proximal tubule also prevents stone formation acting via regulation of apical dicarboxylate and citrate transport. Urinary citrate, partially reabsorbed as a dicarboxylate in the proximal tubule lumen, inhibits stone formation by complexing calcium. We previously demonstrated a novel apical calcium-sensitive dicarboxylate transport system in OK proximal tubule cells. This calcium-sensitive process has the potential to modulate the amount of citrate available to complex increased urinary calcium. Using isotope labeled succinate uptake in OK cells along with various pharmacologic tools we examined whether the CaSR alters apical dicarboxylate transport and through which signal transduction pathways this occurs. Our results indicate that in the proximal tubule CaSR adjusts apical dicarboxylate transport, and does so via a CaSR → Gq → PKC signaling pathway. Thus, the CaSR may decrease the propensity for stone formation via actions in both proximal and distal nephron segments.
Footnotes
1
Complicating this interpretation, NaDC1 has been considered responsible for all citrate reabsrorption on the apical side of the proximal tube. We have previously shown that NaDC1 ex vivo is not calcium-sensitive. So whether the calcium sensitive transport is NaDC1 or not remains unknown.
 
Literature
1.
go back to reference Egbuna O, Quinn S, Kantham L, Butters R, Pang J, Pollak M, Goltzman D, Brown E (2009) The full-length calcium-sensing receptor dampens the calcemic response to 1alpha,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone. Am J Physiol Renal Physiol 297(3):F720–F728CrossRefPubMedPubMedCentral Egbuna O, Quinn S, Kantham L, Butters R, Pang J, Pollak M, Goltzman D, Brown E (2009) The full-length calcium-sensing receptor dampens the calcemic response to 1alpha,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone. Am J Physiol Renal Physiol 297(3):F720–F728CrossRefPubMedPubMedCentral
2.
go back to reference Quamme GA (1982) Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can J Physiol Pharmacol 60(10):1275–1280CrossRefPubMed Quamme GA (1982) Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can J Physiol Pharmacol 60(10):1275–1280CrossRefPubMed
3.
go back to reference Riccardi D, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298(3):F485–F499CrossRefPubMed Riccardi D, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298(3):F485–F499CrossRefPubMed
4.
go back to reference Wang WH, Lu M, Hebert SC (1996) Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271(1 Pt 1):C103–C111CrossRefPubMed Wang WH, Lu M, Hebert SC (1996) Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271(1 Pt 1):C103–C111CrossRefPubMed
5.
go back to reference Topala CN, Schoeber JP, Searchfield LE, Riccardi D, Hoenderop JG, Bindels RJ (2009) Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2 + channel TRPV5. Cell Calcium 45(4):331–339CrossRefPubMed Topala CN, Schoeber JP, Searchfield LE, Riccardi D, Hoenderop JG, Bindels RJ (2009) Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2 + channel TRPV5. Cell Calcium 45(4):331–339CrossRefPubMed
6.
go back to reference Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20(8):1705–1713CrossRefPubMedPubMedCentral Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20(8):1705–1713CrossRefPubMedPubMedCentral
7.
go back to reference Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol 274(3 Pt 2):F611–F622PubMed Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol 274(3 Pt 2):F611–F622PubMed
8.
go back to reference Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331CrossRefPubMed Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331CrossRefPubMed
9.
go back to reference Remy C, Kirchhoff P, Hafner P, Busque SM, Müeller MK, Geibel JP, Wagner CA (2007) Stimulatory pathways of the calcium-sensing receptor on acid secretion in freshly isolated human gastric glands. Cell Physiol Biochem 19(1–4):33–42CrossRefPubMed Remy C, Kirchhoff P, Hafner P, Busque SM, Müeller MK, Geibel JP, Wagner CA (2007) Stimulatory pathways of the calcium-sensing receptor on acid secretion in freshly isolated human gastric glands. Cell Physiol Biochem 19(1–4):33–42CrossRefPubMed
10.
go back to reference Capasso G, Geibel PJ, Damiano S, Jaeger P, Richards WG, Geibel JP (2013) The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int 84(2):277–284CrossRefPubMed Capasso G, Geibel PJ, Damiano S, Jaeger P, Richards WG, Geibel JP (2013) The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int 84(2):277–284CrossRefPubMed
11.
go back to reference Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682CrossRefPubMed Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682CrossRefPubMed
12.
go back to reference Bai XY, Chen X, Sun AQ, Feng Z, Hou K, Fu B (2007) Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter. FASEB J 21(10):2409–2417CrossRefPubMed Bai XY, Chen X, Sun AQ, Feng Z, Hou K, Fu B (2007) Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter. FASEB J 21(10):2409–2417CrossRefPubMed
13.
go back to reference Pajor AM (1999) Citrate transport by the kidney and intestine. Semin Nephrol 19(2):195–200PubMed Pajor AM (1999) Citrate transport by the kidney and intestine. Semin Nephrol 19(2):195–200PubMed
14.
go back to reference Brennan TS, Klahr S, Hamm LL (1986) Citrate transport in rabbit nephron. Am J Physiol 251(4 Pt 2):F683–F689PubMed Brennan TS, Klahr S, Hamm LL (1986) Citrate transport in rabbit nephron. Am J Physiol 251(4 Pt 2):F683–F689PubMed
15.
go back to reference Hering-Smith KS, Gambala CT, Hamm LL (2000) Citrate and succinate transport in proximal tubule cells. Am J Physiol Renal Physiol 278(3):F492–F498CrossRefPubMed Hering-Smith KS, Gambala CT, Hamm LL (2000) Citrate and succinate transport in proximal tubule cells. Am J Physiol Renal Physiol 278(3):F492–F498CrossRefPubMed
16.
go back to reference Hering-Smith KS, Schiro FR, Pajor AM, Hamm LL (2011) Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells. Am J Physiol Renal Physiol 300(2):F425–F432CrossRefPubMed Hering-Smith KS, Schiro FR, Pajor AM, Hamm LL (2011) Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells. Am J Physiol Renal Physiol 300(2):F425–F432CrossRefPubMed
17.
go back to reference Hering-Smith KS, Mao W, Schiro FR, Coleman-Barnett J, Pajor AM, Hamm LL (2014) Localization of the calcium-regulated citrate transport process in proximal tubule cells. Urolithiasis 42(3):209–219CrossRefPubMedPubMedCentral Hering-Smith KS, Mao W, Schiro FR, Coleman-Barnett J, Pajor AM, Hamm LL (2014) Localization of the calcium-regulated citrate transport process in proximal tubule cells. Urolithiasis 42(3):209–219CrossRefPubMedPubMedCentral
18.
go back to reference Law D, Hering-Smith KS, Hamm LL (1992) Citrate transport in proximal cell line. Am J Physiol 263(1 Pt 1):C220–C225CrossRefPubMed Law D, Hering-Smith KS, Hamm LL (1992) Citrate transport in proximal cell line. Am J Physiol 263(1 Pt 1):C220–C225CrossRefPubMed
19.
go back to reference Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4(7):530–538CrossRefPubMed Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4(7):530–538CrossRefPubMed
20.
go back to reference Hernández-Bedolla MA, González-Domínguez E, Zavala-Barrera C, Gutiérrez-López TY, Hidalgo-Moyle JJ, Vázquez-Prado J, Sánchez-Torres C, Reyes-Cruz G (2016) Calcium-sensing-receptor (CaSR) controls IL-6 secretion in metastatic breast cancer MDA-MB-231 cells by a dual mechanism revealed by agonist and inverse-agonist modulators. Mol Cell Endocrinol 436:159–168CrossRefPubMed Hernández-Bedolla MA, González-Domínguez E, Zavala-Barrera C, Gutiérrez-López TY, Hidalgo-Moyle JJ, Vázquez-Prado J, Sánchez-Torres C, Reyes-Cruz G (2016) Calcium-sensing-receptor (CaSR) controls IL-6 secretion in metastatic breast cancer MDA-MB-231 cells by a dual mechanism revealed by agonist and inverse-agonist modulators. Mol Cell Endocrinol 436:159–168CrossRefPubMed
21.
go back to reference Zhu Y, He Q, Aydin C, Rubera I, Tauc M, Chen M, Weinstein LS, Marshansky V, Jüppner H, Bastepe M (2016) Ablation of the stimulatory G protein α-subunit in renal proximal tubules leads to parathyroid hormone-resistance with increased renal Cyp24a1 mRNA abundance and reduced serum 1,25-dihydroxyvitamin D. Endocrinology 157(2):497–507CrossRefPubMed Zhu Y, He Q, Aydin C, Rubera I, Tauc M, Chen M, Weinstein LS, Marshansky V, Jüppner H, Bastepe M (2016) Ablation of the stimulatory G protein α-subunit in renal proximal tubules leads to parathyroid hormone-resistance with increased renal Cyp24a1 mRNA abundance and reduced serum 1,25-dihydroxyvitamin D. Endocrinology 157(2):497–507CrossRefPubMed
22.
go back to reference Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva IV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L, Caruso-Neves C (2005) PI-PLCbeta is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept 127(1–3):177–182CrossRefPubMed Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva IV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L, Caruso-Neves C (2005) PI-PLCbeta is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept 127(1–3):177–182CrossRefPubMed
23.
go back to reference Wu DQ, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267(3):1811–1817PubMed Wu DQ, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267(3):1811–1817PubMed
24.
go back to reference Nasman J, Kukkonen JP, Ammoun S, Akerman KE (2001) Role of G-protein availability in differential signaling by alpha 2-adrenoceptors. Biochem Pharmacol 62(7):913–922CrossRefPubMed Nasman J, Kukkonen JP, Ammoun S, Akerman KE (2001) Role of G-protein availability in differential signaling by alpha 2-adrenoceptors. Biochem Pharmacol 62(7):913–922CrossRefPubMed
25.
go back to reference Brennan SC, Thiem U, Roth S, Aggarwal A, Fetahu IS, Tennakoon S, Gomes AR, Brandi ML, Bruggeman F, Mentaverri R, Riccardi D, Kallay E (2013) Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta 1833(7):1732–1744CrossRefPubMed Brennan SC, Thiem U, Roth S, Aggarwal A, Fetahu IS, Tennakoon S, Gomes AR, Brandi ML, Bruggeman F, Mentaverri R, Riccardi D, Kallay E (2013) Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta 1833(7):1732–1744CrossRefPubMed
26.
go back to reference Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279(18):18990–18997CrossRefPubMed Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279(18):18990–18997CrossRefPubMed
27.
go back to reference Harriman JF, Liu XL, Aleo MD, Machaca K, Schnellmann RG (2002) Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death. Cell Death Differ 9(7):734–741CrossRefPubMed Harriman JF, Liu XL, Aleo MD, Machaca K, Schnellmann RG (2002) Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death. Cell Death Differ 9(7):734–741CrossRefPubMed
28.
go back to reference Beckman ML, Bernstein EM, Quick MW (1999) Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci 19(11):RC9CrossRefPubMed Beckman ML, Bernstein EM, Quick MW (1999) Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci 19(11):RC9CrossRefPubMed
29.
go back to reference Forster IC, Traebert M, Jankowski M, Stange G, Biber J, Murer H (1999) Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes. J Physiol 517(Pt 2):327–340CrossRefPubMedPubMedCentral Forster IC, Traebert M, Jankowski M, Stange G, Biber J, Murer H (1999) Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes. J Physiol 517(Pt 2):327–340CrossRefPubMedPubMedCentral
30.
go back to reference Emery AC, Eiden MV, Eiden LE (2013) A new site and mechanism of action for the widely used adenylate cyclase inhibitor SQ22,536. Mol Pharmacol 83:95–105CrossRefPubMedPubMedCentral Emery AC, Eiden MV, Eiden LE (2013) A new site and mechanism of action for the widely used adenylate cyclase inhibitor SQ22,536. Mol Pharmacol 83:95–105CrossRefPubMedPubMedCentral
31.
go back to reference Yamaguchi T et al (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63:1983–1994CrossRefPubMed Yamaguchi T et al (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63:1983–1994CrossRefPubMed
32.
go back to reference Siebler T et al (1996) Pertussis toxin sensitive G-proteins are not involved in the mitogenic signaling pathway of insulin-like growth factor-I in normal rat kidney epithelial (NRKE) cells. Regul Pept 62:65–71CrossRefPubMed Siebler T et al (1996) Pertussis toxin sensitive G-proteins are not involved in the mitogenic signaling pathway of insulin-like growth factor-I in normal rat kidney epithelial (NRKE) cells. Regul Pept 62:65–71CrossRefPubMed
33.
go back to reference Wang D, McGiff JC, Ferreri NR (2000) Regulation of cyclooxygenase isoforms in the renal thick ascending limb: effects of extracellular calcium. J Physiol Pharmacol 51(4 Pt 1):587–595CrossRefPubMed Wang D, McGiff JC, Ferreri NR (2000) Regulation of cyclooxygenase isoforms in the renal thick ascending limb: effects of extracellular calcium. J Physiol Pharmacol 51(4 Pt 1):587–595CrossRefPubMed
34.
go back to reference Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM (2001) Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 280(2):F291–F302CrossRefPubMed Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM (2001) Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 280(2):F291–F302CrossRefPubMed
35.
go back to reference Kempson SA, Edwards JM, Sturek M (2006) Inhibition of the renal betaine transporter by calcium ions. Am J Physiol Renal Physiol 291(2):F305–F313CrossRefPubMed Kempson SA, Edwards JM, Sturek M (2006) Inhibition of the renal betaine transporter by calcium ions. Am J Physiol Renal Physiol 291(2):F305–F313CrossRefPubMed
36.
go back to reference Hagos Y, Burckhardt BC, Larsen A, Mathys C, Gronow T, Bahn A, Wolff NA, Burckhardt G, Steffgen J (2004) Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C. Am J Physiol Renal Physiol 286(1):F86–F93CrossRefPubMed Hagos Y, Burckhardt BC, Larsen A, Mathys C, Gronow T, Bahn A, Wolff NA, Burckhardt G, Steffgen J (2004) Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C. Am J Physiol Renal Physiol 286(1):F86–F93CrossRefPubMed
37.
go back to reference Wolff NA, Thies K, Kuhnke N, Reid G, Friedrich B, Lang F, Burckhardt G (2003) Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J Am Soc Nephrol 14(8):1959–1968CrossRefPubMed Wolff NA, Thies K, Kuhnke N, Reid G, Friedrich B, Lang F, Burckhardt G (2003) Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J Am Soc Nephrol 14(8):1959–1968CrossRefPubMed
38.
go back to reference Pajor AM, Sun N (1999) Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1. Biochim Biophys Acta 1420(1–2):223–230CrossRefPubMed Pajor AM, Sun N (1999) Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1. Biochim Biophys Acta 1420(1–2):223–230CrossRefPubMed
39.
go back to reference Collins TP, Terrar DA (2012) Ca(2+)-stimulated adenylyl cyclases regulate the L-type Ca(2+) current in guinea-pig atrial myocytes. J Physiol 590(8):1881–1893CrossRefPubMedPubMedCentral Collins TP, Terrar DA (2012) Ca(2+)-stimulated adenylyl cyclases regulate the L-type Ca(2+) current in guinea-pig atrial myocytes. J Physiol 590(8):1881–1893CrossRefPubMedPubMedCentral
40.
go back to reference Li X, Guo Q, Gao J, Yang J, Zhang W, Liang Y, Wu D, Liu Y, Weng J, Li Q, Zhang Y (2013) The adenylyl cyclase inhibitor MDL-12,330A potentiates insulin secretion via blockade of voltage-dependent K(+) channels in pancreatic beta cells. PLoS One 8(10):e77934CrossRefPubMedPubMedCentral Li X, Guo Q, Gao J, Yang J, Zhang W, Liang Y, Wu D, Liu Y, Weng J, Li Q, Zhang Y (2013) The adenylyl cyclase inhibitor MDL-12,330A potentiates insulin secretion via blockade of voltage-dependent K(+) channels in pancreatic beta cells. PLoS One 8(10):e77934CrossRefPubMedPubMedCentral
41.
go back to reference Dal Molin F, Zornetta I, Puhar A, Tonello F, Zaccolo M, Montecucco C (2008) cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin. Biochem Biophys Res Commun 376(2):429–433CrossRefPubMed Dal Molin F, Zornetta I, Puhar A, Tonello F, Zaccolo M, Montecucco C (2008) cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin. Biochem Biophys Res Commun 376(2):429–433CrossRefPubMed
42.
go back to reference Gadea A, López E, López-Colomé AM (1999) The adenylate cyclase inhibitor MDL-12330A has a non-specific effect on glycine transport in Müller cells from the retina. Brain Res 838(1–2):200–204CrossRefPubMed Gadea A, López E, López-Colomé AM (1999) The adenylate cyclase inhibitor MDL-12330A has a non-specific effect on glycine transport in Müller cells from the retina. Brain Res 838(1–2):200–204CrossRefPubMed
43.
go back to reference Lippe C, Ardizzone C (1991) Actions of vasopressin and isoprenaline on the ionic transport across the isolated frog skin in the presence and the absence of adenyl cyclase inhibitors MDL12330A and SQ22536. Comp Biochem Physiol C 99(1–2):209–211CrossRefPubMed Lippe C, Ardizzone C (1991) Actions of vasopressin and isoprenaline on the ionic transport across the isolated frog skin in the presence and the absence of adenyl cyclase inhibitors MDL12330A and SQ22536. Comp Biochem Physiol C 99(1–2):209–211CrossRefPubMed
44.
go back to reference Rampe D, Triggle DJ, Brown AM (1987) Electrophysiologic and biochemical studies on the putative Ca++ channel blocker MDL 12,330A in an endocrine cell. J Pharmacol Exp Ther 243(1):402–407PubMed Rampe D, Triggle DJ, Brown AM (1987) Electrophysiologic and biochemical studies on the putative Ca++ channel blocker MDL 12,330A in an endocrine cell. J Pharmacol Exp Ther 243(1):402–407PubMed
45.
go back to reference Brennan S, Hering-Smith K, Hamm LL (1988) Effect of pH on citrate reabsorption in the proximal convoluted tubule. Am J Physiol 255(2 Pt 2):F301-306 Brennan S, Hering-Smith K, Hamm LL (1988) Effect of pH on citrate reabsorption in the proximal convoluted tubule. Am J Physiol 255(2 Pt 2):F301-306
46.
go back to reference Hamm LL, Hering-Smith KS (2002) Pathophysiology of hypocitraturic nephrolithiasis. Endocrinol Metab Clin North Am 31(4):885–893 viiiCrossRefPubMed Hamm LL, Hering-Smith KS (2002) Pathophysiology of hypocitraturic nephrolithiasis. Endocrinol Metab Clin North Am 31(4):885–893 viiiCrossRefPubMed
48.
go back to reference Magno AL, Ward BK, Ratajczak T (2011) The calcium-sensing receptor: a molecular perspective. Endocr Rev 32(1):3–30CrossRefPubMed Magno AL, Ward BK, Ratajczak T (2011) The calcium-sensing receptor: a molecular perspective. Endocr Rev 32(1):3–30CrossRefPubMed
49.
go back to reference Chang W, Shoback D (2004) Extracellular Ca2+-sensing receptors—an overview. Cell Calcium 35(3):183–196CrossRefPubMed Chang W, Shoback D (2004) Extracellular Ca2+-sensing receptors—an overview. Cell Calcium 35(3):183–196CrossRefPubMed
50.
go back to reference Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302CrossRefPubMed Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302CrossRefPubMed
51.
go back to reference Thomsen AR, Hvidtfeldt M, Bräuner-Osborne H (2012) Biased agonism of the calcium-sensing receptor. Cell Calcium 51(2):107–116CrossRefPubMed Thomsen AR, Hvidtfeldt M, Bräuner-Osborne H (2012) Biased agonism of the calcium-sensing receptor. Cell Calcium 51(2):107–116CrossRefPubMed
52.
go back to reference Thomsen AR, Worm J, Jacobsen SE, Stahlhut M, Latta M, Bräuner-Osborne H (2012) Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6–23 cells. J Pharmacol Exp Ther 343(3):638–649CrossRefPubMed Thomsen AR, Worm J, Jacobsen SE, Stahlhut M, Latta M, Bräuner-Osborne H (2012) Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6–23 cells. J Pharmacol Exp Ther 343(3):638–649CrossRefPubMed
53.
go back to reference Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A (2012) Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 153(3):1232–1241CrossRefPubMed Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A (2012) Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 153(3):1232–1241CrossRefPubMed
54.
go back to reference Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268(7):4625–4636PubMed Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268(7):4625–4636PubMed
55.
go back to reference Gether U, Lin S, Kobilka BK (1995) Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 270(47):28268–28275CrossRefPubMed Gether U, Lin S, Kobilka BK (1995) Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 270(47):28268–28275CrossRefPubMed
56.
go back to reference Cordeaux Y, Ijzerman AP, Hill SJ (2004) Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. Br J Pharmacol 143(6):705–714CrossRefPubMedPubMedCentral Cordeaux Y, Ijzerman AP, Hill SJ (2004) Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. Br J Pharmacol 143(6):705–714CrossRefPubMedPubMedCentral
Metadata
Title
Calcium receptor signaling and citrate transport
Authors
Ryan W. Walker
Shijia Zhang
Joycelynn A. Coleman-Barnett
L. Lee Hamm
Kathleen S. Hering-Smith
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 5/2018
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-018-1035-0

Other articles of this Issue 5/2018

Urolithiasis 5/2018 Go to the issue