Skip to main content
Top
Published in: Heart Failure Reviews 2/2014

01-03-2014

Calcium handling proteins: structure, function, and modulation by exercise

Authors: Jamille Locatelli, Leonardo V. M. de Assis, Mauro C. Isoldi

Published in: Heart Failure Reviews | Issue 2/2014

Login to get access

Abstract

Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation–contraction process in the heart among those are sarcoplasmic reticulum Ca2+-ATPase, phospholamban, calsequestrin, sodium–calcium exchanger, L-type calcium’s channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Literature
1.
go back to reference Hunt SA, Abraham WT, Chin MS et al (2009) Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. J Am CollCardiol 53(15):e1–e90 Hunt SA, Abraham WT, Chin MS et al (2009) Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. J Am CollCardiol 53(15):e1–e90
2.
go back to reference Weber KT, Sun Y, Guarda E (1994) Structural remodelling in hypertensive heart disease and the roles of hormones. Hypertension 23(6 Pt 2):869–877PubMed Weber KT, Sun Y, Guarda E (1994) Structural remodelling in hypertensive heart disease and the roles of hormones. Hypertension 23(6 Pt 2):869–877PubMed
3.
go back to reference Conrad CH, Brooks WW, Robinson KG, Bing OHL (1991) Impaired myocardial function in spontaneously hypertensive rats with heart failure. Am J Physiol 260:H136–H145PubMed Conrad CH, Brooks WW, Robinson KG, Bing OHL (1991) Impaired myocardial function in spontaneously hypertensive rats with heart failure. Am J Physiol 260:H136–H145PubMed
4.
go back to reference Gwathmey JK, Warren SE, Briggs GM, Coelas L, Feldman MD, Phillips PJ, Callahan M Jr, Schoen FJ, Grossman W, Morgan JP (1991) Diastolic dysfunction in hypertrophic cardiomyopathy: effect on active force generation during systole. J Clin Invest 87:1023–1031PubMedCentralPubMed Gwathmey JK, Warren SE, Briggs GM, Coelas L, Feldman MD, Phillips PJ, Callahan M Jr, Schoen FJ, Grossman W, Morgan JP (1991) Diastolic dysfunction in hypertrophic cardiomyopathy: effect on active force generation during systole. J Clin Invest 87:1023–1031PubMedCentralPubMed
5.
go back to reference Brooksby P, Levi AJ, Jones JV (1992) Contractile properties of ventricular myocytes isolated from spontaneously hypertensive rat. J Hypertens 10:521–527PubMed Brooksby P, Levi AJ, Jones JV (1992) Contractile properties of ventricular myocytes isolated from spontaneously hypertensive rat. J Hypertens 10:521–527PubMed
6.
go back to reference Gwathmey JK, Morgan JP (1993) Sarcoplasmic reticulum calcium mobilization in right ventricular pressure-overloaded hypertrophy in the ferret: relation to diastolic dysfunction and a negative treppe. Pflügers Arch 422:599–608PubMed Gwathmey JK, Morgan JP (1993) Sarcoplasmic reticulum calcium mobilization in right ventricular pressure-overloaded hypertrophy in the ferret: relation to diastolic dysfunction and a negative treppe. Pflügers Arch 422:599–608PubMed
7.
go back to reference Hajjar RJ, Liao R, Young JB, Fuliehan F, Glass MG, Gwathmey JK (1993) Pathophysiological and biochemical characterization of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27:2212–2221PubMed Hajjar RJ, Liao R, Young JB, Fuliehan F, Glass MG, Gwathmey JK (1993) Pathophysiological and biochemical characterization of an avian model of dilated cardiomyopathy: comparison to findings in human dilated cardiomyopathy. Cardiovasc Res 27:2212–2221PubMed
8.
go back to reference Cerbai E, Barbieri M, Li Q, Mugelli A (1994) Ionic basis of action potential prolongation of hypertrophied myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 28:1180–1187PubMed Cerbai E, Barbieri M, Li Q, Mugelli A (1994) Ionic basis of action potential prolongation of hypertrophied myocytes isolated from hypertensive rats of different ages. Cardiovasc Res 28:1180–1187PubMed
9.
go back to reference Moore RL, Yelamarty RV, Misawa H, Scaduto RC, Pawlush DG, Elensky M, Cheung JY (1991) Altered Ca2 + dynamics in single cardiac myocytes from renovascular hypertensive rats. Am J Physiol 260:C327–C337PubMed Moore RL, Yelamarty RV, Misawa H, Scaduto RC, Pawlush DG, Elensky M, Cheung JY (1991) Altered Ca2 + dynamics in single cardiac myocytes from renovascular hypertensive rats. Am J Physiol 260:C327–C337PubMed
10.
go back to reference Bailey BA, Houser SA (1992) Calcium transients in feline left ventricular myocytes with hypertrophy induced by slow progressive pressure overload. J Mol Cell Cardiol 24:365–373PubMed Bailey BA, Houser SA (1992) Calcium transients in feline left ventricular myocytes with hypertrophy induced by slow progressive pressure overload. J Mol Cell Cardiol 24:365–373PubMed
11.
go back to reference Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055PubMed Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055PubMed
12.
go back to reference van Deel ED, de Boer M, Kuster DW, Boontje NM, Holemans P, Sipido KR, van der Velden J, Duncker DJ (2011) Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol 50(6):1017–1025PubMed van Deel ED, de Boer M, Kuster DW, Boontje NM, Holemans P, Sipido KR, van der Velden J, Duncker DJ (2011) Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol 50(6):1017–1025PubMed
13.
go back to reference Dupont S, Maizel J, Mentaverri R, Chillon JM, Six I, Giummelly P, Brazier M, Choukroun G, Tribouilloy C, Massy ZA, Slama M (2012) The onset of left ventricular diastolic dysfunction in SHR rats is not related to hypertrophy or hypertension. Am J Physiol Heart Circ Physiol 1; 302(7):H1524–H1532 Dupont S, Maizel J, Mentaverri R, Chillon JM, Six I, Giummelly P, Brazier M, Choukroun G, Tribouilloy C, Massy ZA, Slama M (2012) The onset of left ventricular diastolic dysfunction in SHR rats is not related to hypertrophy or hypertension. Am J Physiol Heart Circ Physiol 1; 302(7):H1524–H1532
14.
go back to reference Arai M et al (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469PubMed Arai M et al (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469PubMed
15.
go back to reference Go LO et al (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95:888–894PubMedCentralPubMed Go LO et al (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95:888–894PubMedCentralPubMed
16.
go back to reference Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33(7):1345–1353PubMed Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33(7):1345–1353PubMed
17.
go back to reference Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11PubMed Marks AR (2000) Cardiac intracellular calcium release channels: role in heart failure. Circ Res 87:8–11PubMed
18.
go back to reference Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMed Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMed
19.
go back to reference Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227PubMed Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227PubMed
20.
go back to reference Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392PubMedCentralPubMed Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392PubMedCentralPubMed
21.
go back to reference Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290–299PubMed Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290–299PubMed
22.
go back to reference LaPointe MC, Deschepper CF, Wu JP, Gardner DG (1990) Extracellular calcium regulates expression of the gene for atrial natriuretic factor. Hypertension 15:20–28PubMed LaPointe MC, Deschepper CF, Wu JP, Gardner DG (1990) Extracellular calcium regulates expression of the gene for atrial natriuretic factor. Hypertension 15:20–28PubMed
23.
go back to reference Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J (1998) Ca2 + currents in compensated hypertrophy and heart failure. Cardiovasc Res 37:300–311PubMed Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J (1998) Ca2 + currents in compensated hypertrophy and heart failure. Cardiovasc Res 37:300–311PubMed
24.
go back to reference Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205PubMed Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205PubMed
25.
go back to reference Beuckelmann DJ, Nabauer M, Kruger C, Erdmann E (1995) Altered diastolic [Ca2+]i handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 129(4):684–689PubMed Beuckelmann DJ, Nabauer M, Kruger C, Erdmann E (1995) Altered diastolic [Ca2+]i handling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 129(4):684–689PubMed
26.
go back to reference MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4(7):566–577PubMed MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4(7):566–577PubMed
27.
go back to reference Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114(Pt 17):3167–3176PubMed Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114(Pt 17):3167–3176PubMed
28.
go back to reference Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94(6):e61–e70PubMed Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94(6):e61–e70PubMed
29.
go back to reference Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB et al (1997) Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806PubMed Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB et al (1997) Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806PubMed
30.
go back to reference Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947PubMed Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947PubMed
31.
go back to reference Ebashi S, Lippman F (1962) Adenosine triphosphate linked concentration of calcium ions in a particular fraction of rabbit muscle. J Cell Biol 14:389–400PubMed Ebashi S, Lippman F (1962) Adenosine triphosphate linked concentration of calcium ions in a particular fraction of rabbit muscle. J Cell Biol 14:389–400PubMed
32.
go back to reference Gelebart P, Martin V, Enouf J, Papp B (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303(2):676–684PubMed Gelebart P, Martin V, Enouf J, Papp B (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303(2):676–684PubMed
33.
go back to reference Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442PubMed Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442PubMed
34.
go back to reference Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U et al (1996) Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med (Berl) 74(6):321–332 Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U et al (1996) Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med (Berl) 74(6):321–332
35.
go back to reference Martonosi AN, Pikula S (2003) The structure of the Ca2+-ATPase of sarcoplasmic reticulum. Acta Biochim Pol 50(2):337–365PubMed Martonosi AN, Pikula S (2003) The structure of the Ca2+-ATPase of sarcoplasmic reticulum. Acta Biochim Pol 50(2):337–365PubMed
36.
go back to reference Martin V, Bredoux R, Corvazier E, Van Gorp R, Kovacs T, Gelebart P et al (2002) Three novel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms. Expression, regulation, and function of the membranes of the SERCA3 family. J Biol Chem 277(27):24442–24452PubMed Martin V, Bredoux R, Corvazier E, Van Gorp R, Kovacs T, Gelebart P et al (2002) Three novel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms. Expression, regulation, and function of the membranes of the SERCA3 family. J Biol Chem 277(27):24442–24452PubMed
37.
go back to reference Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740PubMed Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740PubMed
38.
go back to reference Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF (2003) Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol 284:H1043–H1047PubMed Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF (2003) Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol 284:H1043–H1047PubMed
39.
go back to reference Kotlo K, Johnson KR, Grillon JM, Geenen DL, Detombe P, Danziger RS (2012) Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 21(77):1–13 Kotlo K, Johnson KR, Grillon JM, Geenen DL, Detombe P, Danziger RS (2012) Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 21(77):1–13
40.
go back to reference Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192PubMed Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192PubMed
41.
go back to reference Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865PubMed Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865PubMed
42.
go back to reference Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657PubMed Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657PubMed
43.
go back to reference Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277(25):22896–22901PubMed Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277(25):22896–22901PubMed
44.
go back to reference Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641PubMed Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641PubMed
45.
go back to reference Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34(8):951–969PubMed Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34(8):951–969PubMed
46.
go back to reference Frantz S, Behr T, Hu K, Fraccarollo D, Strotmann J, Goldberg E et al (2007) Role of p38 mitogen-activated protein kinase in cardiac remodelling. Br J Pharmacol 150(2):130–135PubMed Frantz S, Behr T, Hu K, Fraccarollo D, Strotmann J, Goldberg E et al (2007) Role of p38 mitogen-activated protein kinase in cardiac remodelling. Br J Pharmacol 150(2):130–135PubMed
47.
go back to reference Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 43(6):754–766PubMedCentralPubMed Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 43(6):754–766PubMedCentralPubMed
48.
go back to reference Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN (2003) Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing 607 hearts. Am J Physiol Heart Circ Physiol 285(6):H2373–H2381PubMed Gupta RC, Mishra S, Rastogi S, Imai M, Habib O, Sabbah HN (2003) Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing 607 hearts. Am J Physiol Heart Circ Physiol 285(6):H2373–H2381PubMed
49.
go back to reference van Oort RJ, van RE, Bourajjaj M, Schimmel J, Jansen MA, van der NR, et al (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in 621 calcineurin-induced heart failure. Circulation 114(4):298–308 van Oort RJ, van RE, Bourajjaj M, Schimmel J, Jansen MA, van der NR, et al (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in 621 calcineurin-induced heart failure. Circulation 114(4):298–308
50.
go back to reference Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316PubMed Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316PubMed
51.
go back to reference Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M et al (1997) AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95(5):1201–1206PubMed Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M et al (1997) AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95(5):1201–1206PubMed
52.
go back to reference Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J et al (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103(5):670–677PubMed Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J et al (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103(5):670–677PubMed
53.
go back to reference AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med Sep 7(9):1003–1009 AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med Sep 7(9):1003–1009
54.
go back to reference Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228PubMed Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228PubMed
55.
go back to reference Valente AJ, Clark RA, Siddesha JM, Siebenlist U, Chandrasekar B (2012) CIKS (Act1 or TRAF3IP2) mediates angiotensin-II-induced interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy. J Mol Cell Cardiol 53(1):113–124PubMedCentralPubMed Valente AJ, Clark RA, Siddesha JM, Siebenlist U, Chandrasekar B (2012) CIKS (Act1 or TRAF3IP2) mediates angiotensin-II-induced interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy. J Mol Cell Cardiol 53(1):113–124PubMedCentralPubMed
56.
go back to reference Zhang ZY, Liu XH, Hu WC, Rong F, Wu XD (2010) The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1499–H1509PubMed Zhang ZY, Liu XH, Hu WC, Rong F, Wu XD (2010) The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1499–H1509PubMed
57.
go back to reference Dode L, Wuytack F, Kools PF, Baba-Aissa F, Raeymaekers L, Brike F et al (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Biochem J 318(Pt 2):689–699PubMed Dode L, Wuytack F, Kools PF, Baba-Aissa F, Raeymaekers L, Brike F et al (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca2+-ATPase 3 gene. Biochem J 318(Pt 2):689–699PubMed
58.
go back to reference Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB (1992) Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem 267(18):12545–12551PubMed Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB (1992) Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem 267(18):12545–12551PubMed
59.
go back to reference Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93(6):487–490PubMed Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93(6):487–490PubMed
60.
go back to reference Zheng M, Dilly K, Dos Santos Cruz J, Li M, Gu Y, Ursitti JA et al (2004) Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol 286(1):H424–433PubMed Zheng M, Dilly K, Dos Santos Cruz J, Li M, Gu Y, Ursitti JA et al (2004) Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart. Am J Physiol Heart Circ Physiol 286(1):H424–433PubMed
61.
go back to reference Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92(4):778–784PubMed Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92(4):778–784PubMed
62.
go back to reference Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H (1997) Calcium handling proteins in the failing human heart. Basic Res Cardiol 92(Suppl 1):87–93PubMed Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H (1997) Calcium handling proteins in the failing human heart. Basic Res Cardiol 92(Suppl 1):87–93PubMed
63.
go back to reference Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS et al (1999) Relationship between Na+–Ca2+ exchanger protein levels and diastolic function of failing human myocardium. Circulation 99(5):641–648PubMed Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS et al (1999) Relationship between Na+–Ca2+ exchanger protein levels and diastolic function of failing human myocardium. Circulation 99(5):641–648PubMed
64.
go back to reference Houser SR, Piacentino V, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32(9):1595–1607PubMed Houser SR, Piacentino V, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32(9):1595–1607PubMed
65.
go back to reference Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90(2):653–657PubMed Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90(2):653–657PubMed
66.
go back to reference Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30(10):1929–1937PubMed Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30(10):1929–1937PubMed
67.
go back to reference Schwinger RHG, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M et al (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92(11):3220–3228PubMed Schwinger RHG, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M et al (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92(11):3220–3228PubMed
68.
go back to reference Dhalla NS, Golfman L, Liu X, Sasaki H, Elimban V, Rupp H (1999) Subcellular remodeling and heart dysfunction in cardiac hypertrophy due to pressure overload. Ann N Y Acad Sci 874(1):100–110PubMed Dhalla NS, Golfman L, Liu X, Sasaki H, Elimban V, Rupp H (1999) Subcellular remodeling and heart dysfunction in cardiac hypertrophy due to pressure overload. Ann N Y Acad Sci 874(1):100–110PubMed
69.
go back to reference Bassani JW, Qi M, Samarel AM, Bers DM (1994) Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells. Circ Res 74(5):991–997PubMed Bassani JW, Qi M, Samarel AM, Bers DM (1994) Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells. Circ Res 74(5):991–997PubMed
70.
go back to reference Ait Mou Y, Reboul C, Andre L, Lacampagne A, Cazorla O (2009) Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovasc Res 81(3):555–564PubMed Ait Mou Y, Reboul C, Andre L, Lacampagne A, Cazorla O (2009) Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovasc Res 81(3):555–564PubMed
71.
go back to reference Buttrick PM, Kaplan M, Leinwand LA, Scheuer J (1994) Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol 26(1):61–67PubMed Buttrick PM, Kaplan M, Leinwand LA, Scheuer J (1994) Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol 26(1):61–67PubMed
72.
go back to reference Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 249(19):6174–6180PubMed Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 249(19):6174–6180PubMed
73.
go back to reference Napolitano R, Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazzi A (1992) Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca2+-calmodulin-dependent protein kinase system. J Mol Cell Cardiol 24(4):387–396PubMed Napolitano R, Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazzi A (1992) Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca2+-calmodulin-dependent protein kinase system. J Mol Cell Cardiol 24(4):387–396PubMed
74.
go back to reference Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S (1999) Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 276(5 Pt 2):H1625–H1633PubMed Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S (1999) Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 276(5 Pt 2):H1625–H1633PubMed
75.
go back to reference Collins HL, Loka AM, DiCarlo SE (2005) Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. Am J Physiol Heart Circ Physiol 288(2):H532–H540PubMed Collins HL, Loka AM, DiCarlo SE (2005) Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. Am J Physiol Heart Circ Physiol 288(2):H532–H540PubMed
76.
go back to reference Sugizaki MM, Leopoldo AP, Conde SJ, Campos DS, Damato R, Leopoldo AS et al (2011) Upregulation of mRNA myocardium calcium handling in rats submitted to exercise and food restriction. Arq Bras Cardiol 97(1):46–52PubMed Sugizaki MM, Leopoldo AP, Conde SJ, Campos DS, Damato R, Leopoldo AS et al (2011) Upregulation of mRNA myocardium calcium handling in rats submitted to exercise and food restriction. Arq Bras Cardiol 97(1):46–52PubMed
77.
go back to reference Yin CC, Lai FA (2000) Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2(9):669–671PubMed Yin CC, Lai FA (2000) Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nat Cell Biol 2(9):669–671PubMed
78.
go back to reference Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE et al (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–109PubMed Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE et al (2008) Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol 104(1):103–109PubMed
79.
go back to reference Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911PubMedCentralPubMed Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911PubMedCentralPubMed
80.
go back to reference Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77:265–273PubMed Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77:265–273PubMed
81.
go back to reference Teucher N, Prestle J, Seidler T, Currie S, Elliott EB, Reynolds DF et al (2004) Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110:3553–3559PubMed Teucher N, Prestle J, Seidler T, Currie S, Elliott EB, Reynolds DF et al (2004) Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110:3553–3559PubMed
82.
go back to reference Vangheluwe P, Tjwa M, Van Den Bergh A, Louch WE, Beullens M, Dode L et al (2006) SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317PubMed Vangheluwe P, Tjwa M, Van Den Bergh A, Louch WE, Beullens M, Dode L et al (2006) SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317PubMed
83.
go back to reference Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F (2006) New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763:1216–1228PubMed Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F (2006) New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763:1216–1228PubMed
84.
go back to reference Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA et al (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539PubMedCentralPubMed Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, Walsh RA et al (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539PubMedCentralPubMed
85.
go back to reference Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299(5611):1410–1413PubMed Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299(5611):1410–1413PubMed
86.
go back to reference Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA et al (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103(5):1388–1393PubMed Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA et al (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103(5):1388–1393PubMed
87.
go back to reference Asahi M, Otsu K, Nakayama H, Hikoso S, Takeda T, Gramolini AO et al (2004) Cardiac-specific overexpression of sarcolipin inhibits sarco(endo) plasmic reticulum Ca2+ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc Natl Acad Sci USA 101(25):9199–9204PubMed Asahi M, Otsu K, Nakayama H, Hikoso S, Takeda T, Gramolini AO et al (2004) Cardiac-specific overexpression of sarcolipin inhibits sarco(endo) plasmic reticulum Ca2+ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc Natl Acad Sci USA 101(25):9199–9204PubMed
88.
go back to reference Babu GJ, Bhupathy P, Timofeyev V, Petrashevskaya NN, Reiser PJ, Chiamvimonvat N et al (2007) Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci USA 104:17867–17872PubMed Babu GJ, Bhupathy P, Timofeyev V, Petrashevskaya NN, Reiser PJ, Chiamvimonvat N et al (2007) Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci USA 104:17867–17872PubMed
89.
go back to reference Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 5:554–565PubMed Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 5:554–565PubMed
90.
go back to reference Gramolini AO, Trivieri MG, Oudit GY, Kislinger T, Li W, Patel MM et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci USA 103(7):2446–2451PubMed Gramolini AO, Trivieri MG, Oudit GY, Kislinger T, Li W, Patel MM et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci USA 103(7):2446–2451PubMed
91.
go back to reference Shanmugam M, Gao S, Hong C, Fefelova N, Nowycky MC, Xie L-H, Periasamy M, Babu GJ (2011) Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovasc Res 89:353–361PubMed Shanmugam M, Gao S, Hong C, Fefelova N, Nowycky MC, Xie L-H, Periasamy M, Babu GJ (2011) Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovasc Res 89:353–361PubMed
92.
go back to reference MacLennan DH, Wong PT (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68(6):1231–1235PubMed MacLennan DH, Wong PT (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68(6):1231–1235PubMed
93.
go back to reference Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA 100(20):11759–11764PubMed Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S (2003) Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA 100(20):11759–11764PubMed
94.
go back to reference Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. J Biol Chem 272(37):23389–23397PubMed Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. J Biol Chem 272(37):23389–23397PubMed
95.
go back to reference Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG et al (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131(4):325–334PubMedCentralPubMed Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG et al (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131(4):325–334PubMedCentralPubMed
96.
go back to reference Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77(2):245–255PubMed Gyorke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77(2):245–255PubMed
97.
go back to reference Kucerova D, Baba HA, Boknik P, Fabritz L, Heinick A, Matus M, Muller FU, Neumann J, Schmitz W, Kirchhefer U (2012) Modulation of SR Ca2+ release by the triadin-calsequestrin ratio in ventricular myocytes. Am J Physiol Heart Circ Physiol 15;302(10):H2008–H2017 Kucerova D, Baba HA, Boknik P, Fabritz L, Heinick A, Matus M, Muller FU, Neumann J, Schmitz W, Kirchhefer U (2012) Modulation of SR Ca2+ release by the triadin-calsequestrin ratio in ventricular myocytes. Am J Physiol Heart Circ Physiol 15;302(10):H2008–H2017
98.
go back to reference Kubalova Z, Gyorke I, Terentyeva R, Viatchenko-Karpinski S, Terentyev D, Williams SC et al (2004) Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. J Physiol 561(Pt 2):515–524PubMed Kubalova Z, Gyorke I, Terentyeva R, Viatchenko-Karpinski S, Terentyev D, Williams SC et al (2004) Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. J Physiol 561(Pt 2):515–524PubMed
99.
go back to reference Hu ST, Liu GS, Shen YF, Wang YL, Tang Y, Yang YJ (2011) Defective Ca2+ handling proteins regulation during heart failure. Physiol Res 60(1):27–37PubMed Hu ST, Liu GS, Shen YF, Wang YL, Tang Y, Yang YJ (2011) Defective Ca2+ handling proteins regulation during heart failure. Physiol Res 60(1):27–37PubMed
100.
go back to reference Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99:283–291PubMed Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99:283–291PubMed
101.
go back to reference McFarland TP, Milstein ML, Cala SE (2010) Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J Mol Cell Cardiol 49:556–564PubMedCentralPubMed McFarland TP, Milstein ML, Cala SE (2010) Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J Mol Cell Cardiol 49:556–564PubMedCentralPubMed
102.
go back to reference Kiarash A, Kelly CE, Phinney BS, Valdivia HH, Abrams J, Cala SE (2004) Cardiovasc Res 63:264–272PubMed Kiarash A, Kelly CE, Phinney BS, Valdivia HH, Abrams J, Cala SE (2004) Cardiovasc Res 63:264–272PubMed
103.
go back to reference Guo A, Cala SE, Song LS (2012) Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 287(20):16670–16680PubMed Guo A, Cala SE, Song LS (2012) Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 287(20):16670–16680PubMed
104.
go back to reference Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA (1985) Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci USA 82(21):7256–7259PubMed Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA (1985) Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci USA 82(21):7256–7259PubMed
105.
go back to reference Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262(4):1740–1747PubMed Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262(4):1740–1747PubMed
106.
go back to reference Inui M, Saito A, Fleischer S (1987) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262(32):15637–15642PubMed Inui M, Saito A, Fleischer S (1987) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262(32):15637–15642PubMed
107.
go back to reference Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508PubMed Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508PubMed
108.
go back to reference Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339(6224):439–445PubMed Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339(6224):439–445PubMed
109.
go back to reference Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD et al (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318(Pt 2):477–487PubMed Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD et al (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318(Pt 2):477–487PubMed
110.
go back to reference Xiao B, Sutherland C, Walsh MP, Chen SR (2004) Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res 94(4):487–495PubMed Xiao B, Sutherland C, Walsh MP, Chen SR (2004) Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+-release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res 94(4):487–495PubMed
111.
go back to reference Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278(40):38593–38600PubMed Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278(40):38593–38600PubMed
112.
go back to reference Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol 279:C724–C733 Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol 279:C724–C733
113.
go back to reference Yamaguchi N, Xu L, Pasek DA, Evans KE, Meissner G (2003) Molecular basis of calmodulin binding to cardiac Ca2+ release channel (ryanodine receptor). J Biol Chem 278:23480–23486PubMed Yamaguchi N, Xu L, Pasek DA, Evans KE, Meissner G (2003) Molecular basis of calmodulin binding to cardiac Ca2+ release channel (ryanodine receptor). J Biol Chem 278:23480–23486PubMed
114.
go back to reference Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, et al (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107(3):477–484 Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, et al (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107(3):477–484
115.
go back to reference Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35PubMedCentralPubMed Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35PubMedCentralPubMed
116.
go back to reference Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376PubMed Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376PubMed
117.
go back to reference Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160(6):919–928PubMed Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160(6):919–928PubMed
118.
go back to reference Zou Y, Liang Y, Gong H, Zhou N, Ma H, Guan A, Sun A, Wang P, Niu Y, Jiang H, Takano H, Toko H, Yao A, Takeshima H, Akazawa H, Shiojima I, Wang Y, Komuro I, Ge J (2011) Ryanodine receptor type 2 is required for the development of pressure overload induced cardiac hypertrophy. Hypertension 58(6):1099–1110PubMed Zou Y, Liang Y, Gong H, Zhou N, Ma H, Guan A, Sun A, Wang P, Niu Y, Jiang H, Takano H, Toko H, Yao A, Takeshima H, Akazawa H, Shiojima I, Wang Y, Komuro I, Ge J (2011) Ryanodine receptor type 2 is required for the development of pressure overload induced cardiac hypertrophy. Hypertension 58(6):1099–1110PubMed
119.
go back to reference Gangopadhyay JP, Ikemoto N (2011) Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte. Biochem J 1; 438(2):379–387 Gangopadhyay JP, Ikemoto N (2011) Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte. Biochem J 1; 438(2):379–387
120.
go back to reference Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2 + , adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073PubMed Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2 + , adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073PubMed
121.
go back to reference Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279(3):C724–C733PubMed Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279(3):C724–C733PubMed
122.
go back to reference Yamaguchi N, Takahashi N, Xu L, Smithies O, Meissner G (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca2+ release channel. J Clin Invest 117:1344–1353PubMedCentralPubMed Yamaguchi N, Takahashi N, Xu L, Smithies O, Meissner G (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca2+ release channel. J Clin Invest 117:1344–1353PubMedCentralPubMed
123.
go back to reference Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibres. J Physiol 120(1–2):171–204PubMed Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibres. J Physiol 120(1–2):171–204PubMed
124.
go back to reference Hagiwara S, Ozawa S, Sand O (1975) Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65(5):617–644PubMed Hagiwara S, Ozawa S, Sand O (1975) Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65(5):617–644PubMed
125.
go back to reference Leszek P, Szperl M, Klisiewicz A, Janas J, Rózański J, Rywik T, Piotrowski W, Kopacz M, Korewicki J (2008) Alterations in calcium regulatory protein expression in patients with preserved left ventricle systolic function and mitral valve stenosis. J Card Fail 14(10):873–880PubMed Leszek P, Szperl M, Klisiewicz A, Janas J, Rózański J, Rywik T, Piotrowski W, Kopacz M, Korewicki J (2008) Alterations in calcium regulatory protein expression in patients with preserved left ventricle systolic function and mitral valve stenosis. J Card Fail 14(10):873–880PubMed
126.
go back to reference Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gõmez AM et al (2006) Ca2+-induced Ca2+ entry or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 90:118–135PubMed Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gõmez AM et al (2006) Ca2+-induced Ca2+ entry or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. Prog Biophys Mol Biol 90:118–135PubMed
127.
go back to reference Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100(5):315–322PubMed Bers DM, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100(5):315–322PubMed
128.
go back to reference Hussain M, Orchard CH (1997) Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J Physiol 505(Pt 2):385–402PubMed Hussain M, Orchard CH (1997) Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J Physiol 505(Pt 2):385–402PubMed
129.
go back to reference DelPrincipe F, Egger M, Pignier C, Niggli E (2001) Enhanced E–C coupling efficiency after beta-stimulation of cardiac myocytes. Biophys J 80:64a DelPrincipe F, Egger M, Pignier C, Niggli E (2001) Enhanced E–C coupling efficiency after beta-stimulation of cardiac myocytes. Biophys J 80:64a
130.
go back to reference Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 3;122(1):280–290 Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 3;122(1):280–290
131.
go back to reference Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93(1):120–128PubMed Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93(1):120–128PubMed
132.
go back to reference Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca² + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674PubMedCentralPubMed Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca² + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674PubMedCentralPubMed
133.
go back to reference Philipson KD, Longoni S, Ward R (1988) Purification of the cardiac Na+/Ca2+ exchange protein. Biochimica et Biophysica Acta (BBA) Biomembranes 945(2):298–306 Philipson KD, Longoni S, Ward R (1988) Purification of the cardiac Na+/Ca2+ exchange protein. Biochimica et Biophysica Acta (BBA) Biomembranes 945(2):298–306
134.
go back to reference Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+–Ca2+ exchanger. Science 250(4980):562–565PubMed Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+–Ca2+ exchanger. Science 250(4980):562–565PubMed
135.
go back to reference Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP et al (1994) Cloning of the NCX2 isoform of the plasma membrane Na+–Ca2+ exchanger. J Biol Chem 269(26):17434–17439PubMed Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP et al (1994) Cloning of the NCX2 isoform of the plasma membrane Na+–Ca2+ exchanger. J Biol Chem 269(26):17434–17439PubMed
136.
go back to reference Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+–Ca2+ exchanger, NCX3. J Biol Chem 271(40):24914–24921PubMed Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+–Ca2+ exchanger, NCX3. J Biol Chem 271(40):24914–24921PubMed
137.
go back to reference Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+–Ca2+ exchanger. J Biol Chem 274(2):910–917PubMed Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+–Ca2+ exchanger. J Biol Chem 274(2):910–917PubMed
138.
go back to reference Kent RL, Rozich JD, McCollam PL et al (1993) Rapid expression of the Na+–Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265:H1024–H1029PubMed Kent RL, Rozich JD, McCollam PL et al (1993) Rapid expression of the Na+–Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265:H1024–H1029PubMed
139.
go back to reference Menick DR, Barnes KV, Thacker UF et al (1996) The exchanger and cardiac hypertrophy. Ann N Y Acad Sci 779:489–501PubMed Menick DR, Barnes KV, Thacker UF et al (1996) The exchanger and cardiac hypertrophy. Ann N Y Acad Sci 779:489–501PubMed
140.
go back to reference Menick DR, Renaud L, Buchholz A, Muller JG, Zhou H, Kappler CS et al (2007) Regulation of Ncx1 gene expression in the normal and hypertrophic heart. Ann N Y Acad Sci 1099:195–203PubMedCentralPubMed Menick DR, Renaud L, Buchholz A, Muller JG, Zhou H, Kappler CS et al (2007) Regulation of Ncx1 gene expression in the normal and hypertrophic heart. Ann N Y Acad Sci 1099:195–203PubMedCentralPubMed
141.
go back to reference Xu L, Renaud L, Muller JG, Baicu CF, Bonnema DD, Zhou H et al (2006) Regulation of Ncx1 expression. Identification of regulatory elements mediating cardiac-specific expression and up-regulation. J Biol Chem 281(45):34430–34440PubMedCentralPubMed Xu L, Renaud L, Muller JG, Baicu CF, Bonnema DD, Zhou H et al (2006) Regulation of Ncx1 expression. Identification of regulatory elements mediating cardiac-specific expression and up-regulation. J Biol Chem 281(45):34430–34440PubMedCentralPubMed
142.
go back to reference Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A et al (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101(47):16683–16688PubMed Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A et al (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101(47):16683–16688PubMed
143.
go back to reference Kent RL, Rozich JD, McCollam PL, McDermott DE, Thacker UF, Menick DR et al (1993) Rapid expression of the Na+-Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265(3 Pt 2):H1024–H1029PubMed Kent RL, Rozich JD, McCollam PL, McDermott DE, Thacker UF, Menick DR et al (1993) Rapid expression of the Na+-Ca2+ exchanger in response to cardiac pressure overload. Am J Physiol 265(3 Pt 2):H1024–H1029PubMed
144.
go back to reference Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR (1999) The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+–Ca2+ exchanger gene. J Biol Chem 274(18):12819–12826PubMed Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR (1999) The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+–Ca2+ exchanger gene. J Biol Chem 274(18):12819–12826PubMed
145.
go back to reference Muller JG, Isomatsu Y, Koushik SV, O’Quinn M, Xu L, Kappler CS et al (2002) Cardiac-specific expression and hypertrophic upregulation of the feline Na+-Ca2+ exchanger gene H1-promoter in a transgenic mouse model. Circ Res 90(2):158–164PubMed Muller JG, Isomatsu Y, Koushik SV, O’Quinn M, Xu L, Kappler CS et al (2002) Cardiac-specific expression and hypertrophic upregulation of the feline Na+-Ca2+ exchanger gene H1-promoter in a transgenic mouse model. Circ Res 90(2):158–164PubMed
146.
go back to reference Lu YM, Huang J, Shioda N, Fukunaga K, Shirasaki Y, Li XM et al (2011) CaMKIIdeltaB mediates aberrant NCX1 expression and the imbalance of NCX1/SERCA in transverse aortic constriction-induced failing heart. PLoS ONE 6(9):e24724PubMedCentralPubMed Lu YM, Huang J, Shioda N, Fukunaga K, Shirasaki Y, Li XM et al (2011) CaMKIIdeltaB mediates aberrant NCX1 expression and the imbalance of NCX1/SERCA in transverse aortic constriction-induced failing heart. PLoS ONE 6(9):e24724PubMedCentralPubMed
147.
go back to reference Xu L, Chen J, Li XY, Ren S, Huang CX, Wu G, Li XY, Jiang XJ (2012) Analysis of Na+/Ca2+ exchanger (NCX) function and current in murine cardiac myocytes during heart failure. Mol Biol Rep 39(4):3847–3852 Xu L, Chen J, Li XY, Ren S, Huang CX, Wu G, Li XY, Jiang XJ (2012) Analysis of Na+/Ca2+ exchanger (NCX) function and current in murine cardiac myocytes during heart failure. Mol Biol Rep 39(4):3847–3852
148.
go back to reference Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE et al (2002) Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol 92(4):1524–1530PubMed Lu L, Mei DF, Gu AG, Wang S, Lentzner B, Gutstein DE et al (2002) Exercise training normalizes altered calcium-handling proteins during development of heart failure. J Appl Physiol 92(4):1524–1530PubMed
149.
go back to reference Cheung JY, Song J, Rothblum LI, Zhang XQ (2004) Exercise training improves cardiac function postinfarction: special emphasis on recent controversies on Na+/Ca2+ exchanger. Exerc Sport Sci Rev 32(3):83–89PubMed Cheung JY, Song J, Rothblum LI, Zhang XQ (2004) Exercise training improves cardiac function postinfarction: special emphasis on recent controversies on Na+/Ca2+ exchanger. Exerc Sport Sci Rev 32(3):83–89PubMed
150.
go back to reference Litwin S, Bridge JH (1997) Enhanced Na+/Ca2+ exchange in the infracted heart. Implications for excitation–contraction coupling. Circ Res 81:1083–1093PubMed Litwin S, Bridge JH (1997) Enhanced Na+/Ca2+ exchange in the infracted heart. Implications for excitation–contraction coupling. Circ Res 81:1083–1093PubMed
151.
go back to reference Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na_/Ca2_ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019PubMed Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na_/Ca2_ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019PubMed
152.
go back to reference Hasenfuss G (1998) Alteration of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289PubMed Hasenfuss G (1998) Alteration of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289PubMed
153.
go back to reference de Tombe PP (1998) Altered contractile function in heart failure. Cardiovasc Res 37:367–380PubMed de Tombe PP (1998) Altered contractile function in heart failure. Cardiovasc Res 37:367–380PubMed
154.
go back to reference Dipla K, Mattiello J, Margulies K, Jeevanandam V, Houser S (1999) Sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 84:435–444PubMed Dipla K, Mattiello J, Margulies K, Jeevanandam V, Houser S (1999) Sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 84:435–444PubMed
155.
go back to reference Gaughan J, Furukawa S, Jeevanadam V, Hefner C, Kubo H, Margulies K, McGowan B, Mattiello J, Dipla K, Piacentino V III, Li S, Houser S (1999) Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. Am J Physiol Heart Circ Physiol 277:H714–H724 Gaughan J, Furukawa S, Jeevanadam V, Hefner C, Kubo H, Margulies K, McGowan B, Mattiello J, Dipla K, Piacentino V III, Li S, Houser S (1999) Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. Am J Physiol Heart Circ Physiol 277:H714–H724
156.
go back to reference Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A et al (2009) Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J Physiol 587(Pt 15):3899–3910PubMed Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A et al (2009) Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J Physiol 587(Pt 15):3899–3910PubMed
157.
go back to reference Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL et al (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214(2):316–321PubMed Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL et al (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214(2):316–321PubMed
158.
go back to reference Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL (2005) Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 289(5):H2030–H2038PubMed Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL (2005) Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 289(5):H2030–H2038PubMed
159.
go back to reference Davey Smith G, Shipley MJ, Batty GD, et al (2000) Physical activity and cause-specific mortality in the Whitehall study. Public Health 114:308–315 Davey Smith G, Shipley MJ, Batty GD, et al (2000) Physical activity and cause-specific mortality in the Whitehall study. Public Health 114:308–315
160.
go back to reference Manson JE, Hu FB, Rich-Edwards JW et al (1999) A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 341:650–658PubMed Manson JE, Hu FB, Rich-Edwards JW et al (1999) A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 341:650–658PubMed
161.
go back to reference Lee IM, Sesso HD, Oguma Y et al (2003) Relative intensity of physical activity and risk of coronary heart disease. Circulation 107:1110–1116PubMed Lee IM, Sesso HD, Oguma Y et al (2003) Relative intensity of physical activity and risk of coronary heart disease. Circulation 107:1110–1116PubMed
162.
go back to reference Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288:1994–2000PubMed Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288:1994–2000PubMed
163.
go back to reference Leon AS, Myers MJ, Connett J (1997) Leisure time physical activity and the 16-year risks of mortality from coronary heart disease and all-causes in the Multiple Risk Factor Intervention Trial (MRFIT). Int J Sports Med 18:S208–S215PubMed Leon AS, Myers MJ, Connett J (1997) Leisure time physical activity and the 16-year risks of mortality from coronary heart disease and all-causes in the Multiple Risk Factor Intervention Trial (MRFIT). Int J Sports Med 18:S208–S215PubMed
164.
go back to reference Hamer M, Chida Y (2012) Walking and primary prevention. A metaanalysis of prospective cohort studies. Br J Sports Med Hamer M, Chida Y (2012) Walking and primary prevention. A metaanalysis of prospective cohort studies. Br J Sports Med
165.
go back to reference Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1423–1434PubMed Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1423–1434PubMed
166.
go back to reference Hamer M, Stamatakis E (2008) Physical activity and cardiovascular disease: directions for future research. Open Sports Sci J 1, 1–2 1 1875-399X/08 2008 Hamer M, Stamatakis E (2008) Physical activity and cardiovascular disease: directions for future research. Open Sports Sci J 1, 1–2 1 1875-399X/08 2008
167.
go back to reference Wannamethee SG, Shaper AG, Walker M (2000) Physical activity and mortality in older men with diagnosed coronary heart disease. Circulation 102:1358–1363PubMed Wannamethee SG, Shaper AG, Walker M (2000) Physical activity and mortality in older men with diagnosed coronary heart disease. Circulation 102:1358–1363PubMed
168.
go back to reference Wisløff U, Støylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094PubMed Wisløff U, Støylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094PubMed
169.
go back to reference Peschel T, Sixt S, Beitz F et al (2007) High, but not moderate frequency and duration of exercise training induces downregulation of the expression of inflammatory and atherogenic adhesion molecules. Eur J Cardiovasc Prev Rehabil 14:476–482PubMed Peschel T, Sixt S, Beitz F et al (2007) High, but not moderate frequency and duration of exercise training induces downregulation of the expression of inflammatory and atherogenic adhesion molecules. Eur J Cardiovasc Prev Rehabil 14:476–482PubMed
170.
go back to reference Ferreira JC, Moreira JB, Campos JC, Pereira MG, Mattos KC, Coelho MA, Brum PC (2011) Angiotensin receptor blockade improves the net balance of cardiac Ca2+ handling-related proteins in sympathetic hyperactivity-induced heart failure. Life Sci 88(13–14):578–585PubMed Ferreira JC, Moreira JB, Campos JC, Pereira MG, Mattos KC, Coelho MA, Brum PC (2011) Angiotensin receptor blockade improves the net balance of cardiac Ca2+ handling-related proteins in sympathetic hyperactivity-induced heart failure. Life Sci 88(13–14):578–585PubMed
171.
go back to reference Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kääb S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1(2):93–102PubMed Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kääb S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1(2):93–102PubMed
172.
go back to reference Winslow RL, Rice J, Jafri S, Marbán E, O’Rourke B (1999) Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84(5):571–586PubMed Winslow RL, Rice J, Jafri S, Marbán E, O’Rourke B (1999) Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84(5):571–586PubMed
173.
go back to reference Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’rourke B, Kass DA, Marbán E, Shorofsky SR, Tomaselli GF, William Balke C (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618PubMedCentralPubMed Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’rourke B, Kass DA, Marbán E, Shorofsky SR, Tomaselli GF, William Balke C (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618PubMedCentralPubMed
174.
go back to reference Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41(1):135–146PubMed Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41(1):135–146PubMed
175.
go back to reference Roos KP, Jordan MC, Fishbein MC, Ritter MR, Friedlander M, Chang HC, Rahgozar P, Han T, Garcia AJ, Maclellan WR, Ross RS, Philipson KD (2007) Hypertrophy and heart failure in mice overexpressing the cardiac sodium-calcium exchanger. J Card Fail 13(4):318–329PubMedCentralPubMed Roos KP, Jordan MC, Fishbein MC, Ritter MR, Friedlander M, Chang HC, Rahgozar P, Han T, Garcia AJ, Maclellan WR, Ross RS, Philipson KD (2007) Hypertrophy and heart failure in mice overexpressing the cardiac sodium-calcium exchanger. J Card Fail 13(4):318–329PubMedCentralPubMed
176.
go back to reference Schotten U, Koenigs B, Rueppel M, Schoendube F, Boknik P, Schmitz W, Hanrath P (1999) Reduced myocardial sarcoplasmic reticulum Ca2+-ATPase protein expression in compensated primary and secondary human cardiac hypertrophy. J Mol Cell Cardiol 31(8):1483–1494PubMed Schotten U, Koenigs B, Rueppel M, Schoendube F, Boknik P, Schmitz W, Hanrath P (1999) Reduced myocardial sarcoplasmic reticulum Ca2+-ATPase protein expression in compensated primary and secondary human cardiac hypertrophy. J Mol Cell Cardiol 31(8):1483–1494PubMed
177.
go back to reference Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101(7):1385–1393PubMedCentralPubMed Jones LR, Suzuki YJ, Wang W, Kobayashi YM, Ramesh V, Franzini-Armstrong C, Cleemann L, Morad M (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest 101(7):1385–1393PubMedCentralPubMed
178.
go back to reference da Costa Rebelo RM, Schreckenberg R, Schlüter KD (2012) Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol 590(Pt 21):5389–5400 da Costa Rebelo RM, Schreckenberg R, Schlüter KD (2012) Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol 590(Pt 21):5389–5400
179.
go back to reference Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227PubMed Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227PubMed
180.
go back to reference Lygren B, Taskén K (2006) Compartmentalized cAMP signalling is important in the regulation of Ca2+ cycling in the heart. Biochem Soc Trans 34(Pt 4):489–491PubMed Lygren B, Taskén K (2006) Compartmentalized cAMP signalling is important in the regulation of Ca2+ cycling in the heart. Biochem Soc Trans 34(Pt 4):489–491PubMed
181.
go back to reference Györke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255PubMed Györke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255PubMed
182.
go back to reference Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102PubMed Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102PubMed
183.
go back to reference Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406(3):365–382PubMed Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406(3):365–382PubMed
Metadata
Title
Calcium handling proteins: structure, function, and modulation by exercise
Authors
Jamille Locatelli
Leonardo V. M. de Assis
Mauro C. Isoldi
Publication date
01-03-2014
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 2/2014
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-013-9373-z

Other articles of this Issue 2/2014

Heart Failure Reviews 2/2014 Go to the issue