Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice

Authors: Albrecht Bergner, Julia Kellner, Anita Kemp da Silva, Fernando Gamarra, Rudolf M Huber

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

Airway smooth muscle cells (ASMC) play a key role in bronchial hyperresponsiveness (BHR). A major component of the signaling cascade leading to ASMC contraction is calcium. So far, agonist-induced Ca2+-signaling in asthma has been studied by comparing innate properties of inbred rat or mouse strains, or by using selected mediators known to be involved in asthma. T-bet knock-out (KO) mice show key features of allergic asthma such as a shift towards TH2-lymphocytes and display a broad spectrum of asthma-like histological and functional characteristics. In this study, we aimed at investigating whether Ca2+-homeostasis of ASMC is altered in T-bet KO-mice as an experimental model of asthma.

Methods

Lung slices of 100 to 200 μm thickness were obtained from T-bet KO- and wild-type mice. Airway contraction in response to acetylcholine (ACH) was measured by video-microscopy and Ca2+-signaling in single ASMC of lung slices was assessed using two-photon-microscopy.

Results

Airways from T-bet KO-mice showed increased baseline airway tone (BAT) and BHR compared to wild-type mice. This could be mimicked by incubation of lung slices from wild-type mice with IL-13. The increased BAT was correlated with an increased incidence of spontaneous changes in intracellular Ca2+-concentrations, whereas BHR correlated with higher ACH-induced Ca2+-transients and an increased proportion of ASMC showing Ca2+-oscillations. Emptying intracellular Ca2+-stores using caffeine or cyclopiazonic acid induced higher Ca2+-elevations in ASMC from T-bet KO- compared to wild-type mice.

Conclusion

Altered Ca2+-homeostasis of ASMC contributes to increased BAT and BHR in lung slices from T-bet KO-mice as a murine asthma model. We propose that a higher Ca2+-content of the intracellular Ca2+-stores is involved in the pathophysiology of these changes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M: Airway structural alterations selectively associated with severe asthma 1. Am J Respir Crit Care Med 2003, 167:1360–1368.CrossRefPubMed Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M: Airway structural alterations selectively associated with severe asthma 1. Am J Respir Crit Care Med 2003, 167:1360–1368.CrossRefPubMed
2.
go back to reference Martin JG, Duguet A, Eidelman DH: The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease. Eur Respir J 2000, 16:349–54.CrossRefPubMed Martin JG, Duguet A, Eidelman DH: The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease. Eur Respir J 2000, 16:349–54.CrossRefPubMed
4.
go back to reference Stephens NL, Li W, Jiang H, Unruh H, Ma X: The biophysics of asthmatic airway smooth muscle 1. Respir Physiol Neurobiol 2003, 137:125–140.CrossRefPubMed Stephens NL, Li W, Jiang H, Unruh H, Ma X: The biophysics of asthmatic airway smooth muscle 1. Respir Physiol Neurobiol 2003, 137:125–140.CrossRefPubMed
5.
go back to reference Amrani Y, Tliba O, Deshpande DA, Walseth TF, Kannan MS, Panettieri RAJ: Bronchial hyperresponsiveness: insights into new signaling molecules 1. Curr Opin Pharmacol 2004, 4:230–234.CrossRefPubMed Amrani Y, Tliba O, Deshpande DA, Walseth TF, Kannan MS, Panettieri RAJ: Bronchial hyperresponsiveness: insights into new signaling molecules 1. Curr Opin Pharmacol 2004, 4:230–234.CrossRefPubMed
6.
go back to reference Pabelick CM, Sieck GC, Prakash YS: Invited Review: Significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol 2001, 91:488–96.PubMed Pabelick CM, Sieck GC, Prakash YS: Invited Review: Significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol 2001, 91:488–96.PubMed
7.
go back to reference Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 2000, 1:11–21.CrossRefPubMed Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 2000, 1:11–21.CrossRefPubMed
8.
go back to reference Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: dynamics, homeostasis and remodelling 1. Nat Rev Mol Cell Biol 2003, 4:517–529.CrossRefPubMed Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: dynamics, homeostasis and remodelling 1. Nat Rev Mol Cell Biol 2003, 4:517–529.CrossRefPubMed
9.
go back to reference Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P: Calcium signalling--an overview. Semin Cell Dev Biol 2001, 12:3–10.CrossRefPubMed Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P: Calcium signalling--an overview. Semin Cell Dev Biol 2001, 12:3–10.CrossRefPubMed
10.
go back to reference Amrani Y, Panettieri RAJ: Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma. Curr Opin Allergy Clin Immunol 2002, 2:39–45.CrossRefPubMed Amrani Y, Panettieri RAJ: Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma. Curr Opin Allergy Clin Immunol 2002, 2:39–45.CrossRefPubMed
11.
go back to reference Parameswaran K, Janssen LJ, O'Byrne PM: Airway hyperresponsiveness and calcium handling by smooth muscle: a "deeper look". Chest 2002, 121:621–4.CrossRefPubMed Parameswaran K, Janssen LJ, O'Byrne PM: Airway hyperresponsiveness and calcium handling by smooth muscle: a "deeper look". Chest 2002, 121:621–4.CrossRefPubMed
12.
go back to reference Tao FC, Tolloczko B, Eidelman DH, Martin JG: Enhanced Ca(2+) mobilization in airway smooth muscle contributes to airway hyperresponsiveness in an inbred strain of rat. Am J Respir Crit Care Med 1999, 160:446–53.CrossRefPubMed Tao FC, Tolloczko B, Eidelman DH, Martin JG: Enhanced Ca(2+) mobilization in airway smooth muscle contributes to airway hyperresponsiveness in an inbred strain of rat. Am J Respir Crit Care Med 1999, 160:446–53.CrossRefPubMed
13.
go back to reference Tao FC, Shah S, Pradhan AA, Tolloczko B, Martin JG: Enhanced calcium signaling to bradykinin in airway smooth muscle from hyperresponsive inbred rats 1. Am J Physiol Lung Cell Mol Physiol 2003, 284:L90-L99.CrossRefPubMed Tao FC, Shah S, Pradhan AA, Tolloczko B, Martin JG: Enhanced calcium signaling to bradykinin in airway smooth muscle from hyperresponsive inbred rats 1. Am J Physiol Lung Cell Mol Physiol 2003, 284:L90-L99.CrossRefPubMed
14.
go back to reference Bergner A, Sanderson MJ: Airway hyperresponsiveness: From molecules to bedside - Selected contribution: Airway contractility and smooth muscle Ca2+ signaling in lung slices from different mouse strains. Journal of Applied Physiology 2003, 95:1325–1332.CrossRefPubMed Bergner A, Sanderson MJ: Airway hyperresponsiveness: From molecules to bedside - Selected contribution: Airway contractility and smooth muscle Ca2+ signaling in lung slices from different mouse strains. Journal of Applied Physiology 2003, 95:1325–1332.CrossRefPubMed
15.
go back to reference Amrani Y, Chen H, Panettieri RAJ: Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma? 1. Respir Res 2000, 1:49–53.CrossRefPubMedPubMedCentral Amrani Y, Chen H, Panettieri RAJ: Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma? 1. Respir Res 2000, 1:49–53.CrossRefPubMedPubMedCentral
16.
go back to reference Madison JM, Ethier MF: Interleukin-4 rapidly inhibits calcium transients in response to carbachol in bovine airway smooth muscle cells 3. Am J Respir Cell Mol Biol 2001, 25:239–244.CrossRefPubMedPubMedCentral Madison JM, Ethier MF: Interleukin-4 rapidly inhibits calcium transients in response to carbachol in bovine airway smooth muscle cells 3. Am J Respir Cell Mol Biol 2001, 25:239–244.CrossRefPubMedPubMedCentral
17.
go back to reference Pype JL, Xu H, Schuermans M, Dupont LJ, Wuyts W, Mak JC, Barnes PJ, Demedts MG, Verleden GM: Mechanisms of interleukin 1beta-induced human airway smooth muscle hyporesponsiveness to histamine. Involvement of p38 MAPK NF-kappaB 1. Am J Respir Crit Care Med 2001, 163:1010–1017.CrossRefPubMed Pype JL, Xu H, Schuermans M, Dupont LJ, Wuyts W, Mak JC, Barnes PJ, Demedts MG, Verleden GM: Mechanisms of interleukin 1beta-induced human airway smooth muscle hyporesponsiveness to histamine. Involvement of p38 MAPK NF-kappaB 1. Am J Respir Crit Care Med 2001, 163:1010–1017.CrossRefPubMed
18.
go back to reference Yang CM, Chien CS, Wang CC, Hsu YM, Chiu CT, Lin CC, Luo SF, Hsiao LD: Interleukin-1beta enhances bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth-muscle cells: involvement of the Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway 2. Biochem J 2001, 354:439–446.CrossRefPubMedPubMedCentral Yang CM, Chien CS, Wang CC, Hsu YM, Chiu CT, Lin CC, Luo SF, Hsiao LD: Interleukin-1beta enhances bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth-muscle cells: involvement of the Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway 2. Biochem J 2001, 354:439–446.CrossRefPubMedPubMedCentral
19.
go back to reference Deshpande DA, Dogan S, Walseth TF, Miller SM, Amrani Y, Panettieri RA, Kannan MS: Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway 1. Am J Respir Cell Mol Biol 2004, 31:36–42.CrossRefPubMed Deshpande DA, Dogan S, Walseth TF, Miller SM, Amrani Y, Panettieri RA, Kannan MS: Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway 1. Am J Respir Cell Mol Biol 2004, 31:36–42.CrossRefPubMed
20.
go back to reference Ethier MF, Cappelluti E, Madison JM: Mechanisms of interleukin-4 effects on calcium signaling in airway smooth muscle cells 1. J Pharmacol Exp Ther 2005, 313:127–133.CrossRefPubMed Ethier MF, Cappelluti E, Madison JM: Mechanisms of interleukin-4 effects on calcium signaling in airway smooth muscle cells 1. J Pharmacol Exp Ther 2005, 313:127–133.CrossRefPubMed
21.
go back to reference Eum SY, Maghni K, Tolloczko B, Eidelman DH, Martin JG: IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle 1. Am J Physiol Lung Cell Mol Physiol 2005, 288:L576-L584.CrossRefPubMed Eum SY, Maghni K, Tolloczko B, Eidelman DH, Martin JG: IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle 1. Am J Physiol Lung Cell Mol Physiol 2005, 288:L576-L584.CrossRefPubMed
22.
go back to reference Tliba O, Deshpande D, Chen H, Van Besien C, Kannan M, Panettieri RAJ, Amrani Y: IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle 1. Br J Pharmacol 2003, 140:1159–1162.CrossRefPubMedPubMedCentral Tliba O, Deshpande D, Chen H, Van Besien C, Kannan M, Panettieri RAJ, Amrani Y: IL-13 enhances agonist-evoked calcium signals and contractile responses in airway smooth muscle 1. Br J Pharmacol 2003, 140:1159–1162.CrossRefPubMedPubMedCentral
23.
go back to reference Deshpande DA, Walseth TF, Panettieri RA, Kannan MS: CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness 1. Faseb J 2003, 17:452–454.PubMed Deshpande DA, Walseth TF, Panettieri RA, Kannan MS: CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness 1. Faseb J 2003, 17:452–454.PubMed
24.
go back to reference Deshpande DA, White TA, Guedes AG, Milla C, Walseth TF, Lund FE, Kannan MS: Altered airway responsiveness in CD38-deficient mice 1. Am J Respir Cell Mol Biol 2005, 32:149–156.CrossRefPubMed Deshpande DA, White TA, Guedes AG, Milla C, Walseth TF, Lund FE, Kannan MS: Altered airway responsiveness in CD38-deficient mice 1. Am J Respir Cell Mol Biol 2005, 32:149–156.CrossRefPubMed
25.
go back to reference Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY, Reiner SL: Role of T-bet in commitment of TH1 cells before IL-12-dependent selection 1. Science 2001, 292:1907–1910.CrossRefPubMed Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY, Reiner SL: Role of T-bet in commitment of TH1 cells before IL-12-dependent selection 1. Science 2001, 292:1907–1910.CrossRefPubMed
26.
go back to reference Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, Glimcher LH: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002, 295:336–8.CrossRefPubMed Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, Glimcher LH: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002, 295:336–8.CrossRefPubMed
27.
go back to reference Bergner A, Sanderson MJ: Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices. J Gen Physiol 2002, 119:187–198.CrossRefPubMedPubMedCentral Bergner A, Sanderson MJ: Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices. J Gen Physiol 2002, 119:187–198.CrossRefPubMedPubMedCentral
28.
go back to reference Bergner A, Sanderson MJ: ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices 10. Am J Physiol Lung Cell Mol Physiol 2002, 283:L1271-L1279.CrossRefPubMed Bergner A, Sanderson MJ: ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices 10. Am J Physiol Lung Cell Mol Physiol 2002, 283:L1271-L1279.CrossRefPubMed
29.
go back to reference Nguyen QT, Callamaras N, Hsieh C, Parker I: Construction of a two-photon microscope for video-rate Ca(2+) imaging 3. Cell Calcium 2001, 30:383–393.CrossRefPubMed Nguyen QT, Callamaras N, Hsieh C, Parker I: Construction of a two-photon microscope for video-rate Ca(2+) imaging 3. Cell Calcium 2001, 30:383–393.CrossRefPubMed
30.
go back to reference Sanderson MJ, Parker I: Video-rate confocal microscopy. Methods in Enzymology 2002. Sanderson MJ, Parker I: Video-rate confocal microscopy. Methods in Enzymology 2002.
31.
go back to reference Finotto S, Hausding M, Doganci A, Maxeiner JH, Lehr HA, Luft C, Galle PR, Glimcher LH: Asthmatic changes in mice lacking T-bet are mediated by IL-13 1. Int Immunol 2005, 17:993–1007.CrossRefPubMed Finotto S, Hausding M, Doganci A, Maxeiner JH, Lehr HA, Luft C, Galle PR, Glimcher LH: Asthmatic changes in mice lacking T-bet are mediated by IL-13 1. Int Immunol 2005, 17:993–1007.CrossRefPubMed
32.
go back to reference Dandurand RJ, Wang CG, Phillips NC, Eidelman DH: Responsiveness of individual airways to methacholine in adult rat lung explants. J Appl Physiol 1993, 75:364–72.PubMed Dandurand RJ, Wang CG, Phillips NC, Eidelman DH: Responsiveness of individual airways to methacholine in adult rat lung explants. J Appl Physiol 1993, 75:364–72.PubMed
33.
go back to reference Martin C, Uhlig S, Ullrich V: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 1996, 9:2479–87.CrossRefPubMed Martin C, Uhlig S, Ullrich V: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 1996, 9:2479–87.CrossRefPubMed
34.
go back to reference Kuo KH, Dai J, Seow CY, Lee CH, van Breemen C: Relationship between asynchronous Ca2+ waves and force development in intact smooth muscle bundles of the porcine trachea 1. Am J Physiol Lung Cell Mol Physiol 2003, 285:L1345-L1353.CrossRefPubMed Kuo KH, Dai J, Seow CY, Lee CH, van Breemen C: Relationship between asynchronous Ca2+ waves and force development in intact smooth muscle bundles of the porcine trachea 1. Am J Physiol Lung Cell Mol Physiol 2003, 285:L1345-L1353.CrossRefPubMed
35.
go back to reference Perez JF, Sanderson MJ: The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles 2. J Gen Physiol 2005, 125:535–553.CrossRefPubMedPubMedCentral Perez JF, Sanderson MJ: The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles 2. J Gen Physiol 2005, 125:535–553.CrossRefPubMedPubMedCentral
36.
go back to reference Massey KL, Hendeles L: Calcium antagonists in the management of asthma: breakthrough or ballyhoo? 1. Drug Intell Clin Pharm 1987, 21:505–509.PubMed Massey KL, Hendeles L: Calcium antagonists in the management of asthma: breakthrough or ballyhoo? 1. Drug Intell Clin Pharm 1987, 21:505–509.PubMed
37.
go back to reference Prakash YS, Pabelick CM, Kannan MS, Sieck GC: Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 2000, 27:153–62.CrossRefPubMed Prakash YS, Pabelick CM, Kannan MS, Sieck GC: Spatial and temporal aspects of ACh-induced [Ca2+]i oscillations in porcine tracheal smooth muscle. Cell Calcium 2000, 27:153–62.CrossRefPubMed
Metadata
Title
Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice
Authors
Albrecht Bergner
Julia Kellner
Anita Kemp da Silva
Fernando Gamarra
Rudolf M Huber
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-33

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.