Skip to main content
Top
Published in: Diabetologia 3/2007

01-03-2007 | For debate

C-peptide is a bioactive peptide

Authors: J. Wahren, K. Ekberg, H. Jörnvall

Published in: Diabetologia | Issue 3/2007

Login to get access

Excerpt

During the past decade, reports from several laboratories have focused on the physiological effects of C-peptide. Experimental data and clinical studies suggest that that C-peptide is a biologically active peptide. Clinical studies show that C-peptide administration in type 1 diabetes patients, who lack the peptide, results in amelioration of diabetes-induced renal and nerve dysfunction. Molecular studies demonstrate binding to cell membranes, activation of intracellular signalling pathways, and specific end effects of importance for vascular endothelial function. These findings have prompted the hypothesis that C-peptide deficiency in type 1 diabetes may contribute to the development of microvascular complications, and that C-peptide replacement, together with regular insulin therapy, may be beneficial in the treatment or prevention of these complications. In the present article we argue the case in favour of C-peptide as a biologically active peptide based on in vivo data and in vitro findings, as summarised in Table 1.
Table 1
Summary of clinical, in vivo animal and in vitro cellular effects of C-peptide
Effect
Reference
In vivo effects
 
 Renal
 
  Functional reserve ↑
[7]
  Glomerular hyperfiltration ↓
[5, 7]
  Urinary albumin excretion ↓
[6]
  Structural abnormalities ↓
[8]
 Nerve
 
  Conduction velocity ↑
[9, 10, 12, 13, 37]
  Vibration perception ↑
[10]
  Blood flow ↑
[13, 20]
  Na+/K+-ATPase activity ↑
[12, 37]
  Hyperalgesia ↓
[14]
  Structural abnormalities ↓
[12, 15]
 Circulation
 
  Muscle blood flow ↑
[16]
  Skin blood flow ↑
[19]
  Myocardial blood flow and contraction rate ↑
[17, 18]
  Myocardial ejection fraction ↑
[17, 18]
  QT interval ↓
 
In vitro effects
 
 Membrane interaction
 
  Specific binding in nanomolar range
[22, 23]
 Intracellular signalling
 
  G-protein involvement
[2529]
  Intracellular Ca2+
[27, 30]
  PKC, MAPK and PI-3Kγ ↑
[26, 28, 31]
  NFκB, PPARγ, Bcl2, c-Fos, ZEB ↑
[29, 36, 46]
 End effects
 
  eNOS activity and protein levels ↑
[30, 33, 34]
  Na+/K+-ATPase activity and protein levels ↑
[25, 31, 36]
  Cell growth ↑
[40]
  Apoptosis ↓
[29, 40]
  Insulinomimetic effects
[32]
  Anti-thrombotic effects
[21]
 Other
 
  Disaggregation of insulin hexamers
[41]
PI-3Kγ, phosphatidylinositol 3-kinase γ; PKC, protein kinase C; ZEB, zinc finger homeodomain enhancer-binding protein
Literature
1.
go back to reference Sjöberg S, Gunnarsson R, Gjötterberg M, Lefvert A, Persson A, Östman J (1987) Residual insulin production, glycemic control and prevalence of microvascular lesions and polyneuropathy in long-term type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:208–213PubMedCrossRef Sjöberg S, Gunnarsson R, Gjötterberg M, Lefvert A, Persson A, Östman J (1987) Residual insulin production, glycemic control and prevalence of microvascular lesions and polyneuropathy in long-term type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:208–213PubMedCrossRef
2.
go back to reference Zerbini G, Mangili R, Luzi L (1999) Higher post-absorptive C-peptide levels in type 1 diabetic patients without renal complications. Diabet Med 16:1048–1049PubMedCrossRef Zerbini G, Mangili R, Luzi L (1999) Higher post-absorptive C-peptide levels in type 1 diabetic patients without renal complications. Diabet Med 16:1048–1049PubMedCrossRef
3.
go back to reference Navarro X, Sutherland D, Kennedy W (1997) Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 42:727–736PubMedCrossRef Navarro X, Sutherland D, Kennedy W (1997) Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 42:727–736PubMedCrossRef
4.
go back to reference Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158PubMedCrossRef Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158PubMedCrossRef
5.
go back to reference Johansson B-L, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in Type I (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef Johansson B-L, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in Type I (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef
6.
go back to reference Johansson B-L, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type I diabetes. Diabet Med 17:181–189PubMedCrossRef Johansson B-L, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type I diabetes. Diabet Med 17:181–189PubMedCrossRef
7.
go back to reference Sjöquist M, Huang W, Johansson B-L (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764PubMedCrossRef Sjöquist M, Huang W, Johansson B-L (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764PubMedCrossRef
8.
go back to reference Samnegård B, Jacobson S, Johansson B-L et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538PubMedCrossRef Samnegård B, Jacobson S, Johansson B-L et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538PubMedCrossRef
9.
go back to reference Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J (2003) Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 52:536–541PubMed Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J (2003) Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 52:536–541PubMed
10.
go back to reference Ekberg K, Brismar T, Johansson B-L et al (2007) C-peptide replacement therapy and sensory nerve function in type 1 diabetes neuropathy. Diabetes Care 30:71–76 Ekberg K, Brismar T, Johansson B-L et al (2007) C-peptide replacement therapy and sensory nerve function in type 1 diabetes neuropathy. Diabetes Care 30:71–76
11.
go back to reference Johansson B-L, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function IDDM patients. Diabetologia 39:687–695PubMed Johansson B-L, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function IDDM patients. Diabetologia 39:687–695PubMed
12.
go back to reference Sima AA, Zhang W, Sugimoto K et al (2001) C-peptide prevents and improves chronic type 1 diabetic polyneuropathy in the BB/Wor rat. Diabetologia 44:889–897PubMedCrossRef Sima AA, Zhang W, Sugimoto K et al (2001) C-peptide prevents and improves chronic type 1 diabetic polyneuropathy in the BB/Wor rat. Diabetologia 44:889–897PubMedCrossRef
13.
go back to reference Cotter M, Ekberg K, Wahren J, Cameron N (2003) Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 52:1812–1817PubMed Cotter M, Ekberg K, Wahren J, Cameron N (2003) Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 52:1812–1817PubMed
14.
go back to reference Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835PubMedCrossRef Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835PubMedCrossRef
15.
go back to reference Pierson C, Zhang W, Sima A (2003) Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 62:765–779PubMed Pierson C, Zhang W, Sima A (2003) Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 62:765–779PubMed
16.
go back to reference Johansson B-L, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of Type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef Johansson B-L, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of Type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef
17.
go back to reference Johansson B-L, Sundell J, Ekberg K et al (2004) C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 286:E14–E19PubMedCrossRef Johansson B-L, Sundell J, Ekberg K et al (2004) C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 286:E14–E19PubMedCrossRef
18.
go back to reference Hansen A, Johansson B-L, Wahren J, von Bibra H (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51:3077–3082PubMed Hansen A, Johansson B-L, Wahren J, von Bibra H (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51:3077–3082PubMed
19.
go back to reference Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMed Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMed
20.
go back to reference Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef
21.
go back to reference Lindenblatt N, Braun B, Menger M, Klar E, Vollmar B (2006) C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia 49:792–800PubMedCrossRef Lindenblatt N, Braun B, Menger M, Klar E, Vollmar B (2006) C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia 49:792–800PubMedCrossRef
22.
go back to reference Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323PubMedCrossRef Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323PubMedCrossRef
23.
go back to reference Henriksson M, Pramanik A, Shafqat J et al (2001) Specific binding of proinsulin C-peptide to detergent-solubilised human skin fibroblasts. Biochem Biophys Res Commun 280:423–427PubMedCrossRef Henriksson M, Pramanik A, Shafqat J et al (2001) Specific binding of proinsulin C-peptide to detergent-solubilised human skin fibroblasts. Biochem Biophys Res Commun 280:423–427PubMedCrossRef
24.
go back to reference Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef
25.
go back to reference Zhong Z, Kotova O, Davidescu A et al (2004) C-peptide stimulates Na+,K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 61:2782–2790PubMedCrossRef Zhong Z, Kotova O, Davidescu A et al (2004) C-peptide stimulates Na+,K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 61:2782–2790PubMedCrossRef
26.
go back to reference Zhong Z, Davidescu A, Ehrén I et al (2005) C-peptide stimulates ERK1/2 and JNK MAP-kinases via activation of PKC in human renal tubular cells. Diabetologia 48:187–197PubMedCrossRef Zhong Z, Davidescu A, Ehrén I et al (2005) C-peptide stimulates ERK1/2 and JNK MAP-kinases via activation of PKC in human renal tubular cells. Diabetologia 48:187–197PubMedCrossRef
27.
go back to reference Shafqat J, Juntti-Berggren L, Zhong Z et al (2002) Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci 59:1185–1189PubMedCrossRef Shafqat J, Juntti-Berggren L, Zhong Z et al (2002) Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci 59:1185–1189PubMedCrossRef
28.
go back to reference Al-Rasheed N, Meakin F, Royal E et al (2004) Potent activation of multiple signalling pathways by C-peptide in oppossum kidney proximal tubular cells. Diabetologia 47:987–997PubMedCrossRef Al-Rasheed N, Meakin F, Royal E et al (2004) Potent activation of multiple signalling pathways by C-peptide in oppossum kidney proximal tubular cells. Diabetologia 47:987–997PubMedCrossRef
29.
go back to reference Al-Rasheed N, Willars G, Brunskill N (2006) C-peptide signals via Gαi to protect against TNF-α-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 17:986–995PubMedCrossRef Al-Rasheed N, Willars G, Brunskill N (2006) C-peptide signals via Gαi to protect against TNF-α-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 17:986–995PubMedCrossRef
30.
go back to reference Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef
31.
go back to reference Tsimaratos M, Roger F, Chabardès D et al (2003) C-peptide stimulates Na,K-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia 46:124–131PubMed Tsimaratos M, Roger F, Chabardès D et al (2003) C-peptide stimulates Na,K-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia 46:124–131PubMed
32.
go back to reference Grunberger G, Qiang X, Li Z et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257PubMedCrossRef Grunberger G, Qiang X, Li Z et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257PubMedCrossRef
33.
go back to reference Kitamura T, Kimura K, Makondo K et al (2003) Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 46:1698–1705PubMedCrossRef Kitamura T, Kimura K, Makondo K et al (2003) Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 46:1698–1705PubMedCrossRef
34.
go back to reference Scalia R, Coyle K, Levine B, Booth G, Lefer A (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during endothelial dysfunction. FASEB J 14:2357–2364PubMedCrossRef Scalia R, Coyle K, Levine B, Booth G, Lefer A (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during endothelial dysfunction. FASEB J 14:2357–2364PubMedCrossRef
35.
go back to reference Joshua I, Zhang Q, Falcone J, Bratcher A, Rodriguez W, Tyagi S (2005) Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: role of insulin and C-peptide. J Cell Biochem 96:1149–1156PubMedCrossRef Joshua I, Zhang Q, Falcone J, Bratcher A, Rodriguez W, Tyagi S (2005) Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: role of insulin and C-peptide. J Cell Biochem 96:1149–1156PubMedCrossRef
36.
go back to reference Chibalin A, Zhong Z, Kotova O, Ehrén I, Ekberg K, Wahren J (2006) Physiological concentrations of C-peptide increase Na,K-ATPase expression via PKC- and MAP kinase dependent activation of transcription factor ZEB in human renal tubular cells. Diabetologia 49(Suppl 1):A348 Chibalin A, Zhong Z, Kotova O, Ehrén I, Ekberg K, Wahren J (2006) Physiological concentrations of C-peptide increase Na,K-ATPase expression via PKC- and MAP kinase dependent activation of transcription factor ZEB in human renal tubular cells. Diabetologia 49(Suppl 1):A348
37.
go back to reference Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef
38.
go back to reference Forst T, Dufayet De La Tour D, Kunt T et al (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+ATPase activity in diabetes mellitus type 1. Clin Sci (Lond) 98:283–290CrossRef Forst T, Dufayet De La Tour D, Kunt T et al (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+ATPase activity in diabetes mellitus type 1. Clin Sci (Lond) 98:283–290CrossRef
39.
go back to reference Kunt T, Schneider S, Pfützner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type 1 diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef Kunt T, Schneider S, Pfützner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type 1 diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef
40.
go back to reference Li Z, Zhang W, Sima A (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes/Metab Res Rev 19:375–385CrossRef Li Z, Zhang W, Sima A (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes/Metab Res Rev 19:375–385CrossRef
41.
go back to reference Shafqat J, Melles E, Sigmundson K et al (2006) Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 63:1805–1811PubMedCrossRef Shafqat J, Melles E, Sigmundson K et al (2006) Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 63:1805–1811PubMedCrossRef
42.
go back to reference Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef
43.
go back to reference DCCT Group (1995) Effect of intensive diabetes treatment on nerve conduction in the diabetes control and complications trial. Ann Neurol 38:869–880CrossRef DCCT Group (1995) Effect of intensive diabetes treatment on nerve conduction in the diabetes control and complications trial. Ann Neurol 38:869–880CrossRef
44.
go back to reference Sima AA, Nathaniel V, Bril V, McEwen T, Green D (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81:349–364PubMedCrossRef Sima AA, Nathaniel V, Bril V, McEwen T, Green D (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81:349–364PubMedCrossRef
45.
go back to reference Sima AA (2004) Diabetic neuropathy in type 1 and 2 diabetes and the effect of C-peptide. J Neurol Sci 220:133–136PubMedCrossRef Sima AA (2004) Diabetic neuropathy in type 1 and 2 diabetes and the effect of C-peptide. J Neurol Sci 220:133–136PubMedCrossRef
46.
go back to reference Sima A, Zhang W, Li Z, Murakawa Y, Pierson C (2004) Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 53:1556–1563PubMed Sima A, Zhang W, Li Z, Murakawa Y, Pierson C (2004) Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 53:1556–1563PubMed
Metadata
Title
C-peptide is a bioactive peptide
Authors
J. Wahren
K. Ekberg
H. Jörnvall
Publication date
01-03-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0559-y

Other articles of this Issue 3/2007

Diabetologia 3/2007 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.