Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 3/2020

01-12-2020 | Bronchial Asthma

Innate-like Lymphocytes and Innate Lymphoid Cells in Asthma

Authors: Chao Huang, Fengqi Li, Jian Wang, Zhigang Tian

Published in: Clinical Reviews in Allergy & Immunology | Issue 3/2020

Login to get access

Abstract

Asthma is a chronic pulmonary disease, highly associated with immune disorders. The typical symptoms of asthma include airway hyperresponsiveness (AHR), airway remodeling, mucus overproduction, and airflow limitation. The etiology of asthma is multifactorial and affected by genetic and environmental factors. Increasing trends toward dysbiosis, smoking, stress, air pollution, and a western lifestyle may account for the increasing incidence of asthma. Based on the presence or absence of eosinophilic inflammation, asthma is mainly divided into T helper 2 (Th2) and non-Th2 asthma. Th2 asthma is mediated by allergen-specific Th2 cells, and eosinophils activated by Th2 cells via the secretion of interleukin (IL)-4, IL-5, and IL-13. Different from Th2 asthma, non-Th2 asthma shows little eosinophilic inflammation, resists to corticosteroid treatment, and occurs mainly in severe asthmatic patients. Previous studies of asthma primarily focused on the function of Th2 cells, but, with the discovery of non-Th2 asthma and the involvement of innate lymphoid cells (ILCs) in the pathogenesis of asthma, tissue-resident innate immune cells in the lung have become the focus of attention in asthma research. Currently, innate-like lymphocytes (ILLs) and ILCs as important components of the innate immune system in mucosal tissues are reportedly involved in the pathogenesis of or protection against both Th2 and non-Th2 asthma. These findings of the functions of different subsets of ILLs and ILCs may provide clues for the treatment of asthma.
Literature
1.
go back to reference Porpodis K, Zarogoulidis P, Spyratos D, Domvri K, Kioumis I, Angelis N, Konoglou M, Kolettas A, Kessisis G, Beleveslis T, Tsakiridis K, Katsikogiannis N, Kougioumtzi I, Tsiouda T, Argyriou M, Kotsakou M, Zarogoulidis K (2014) Pneumothorax and asthma. J Thorac Dis 6(Suppl 1):S152–S161PubMedPubMedCentral Porpodis K, Zarogoulidis P, Spyratos D, Domvri K, Kioumis I, Angelis N, Konoglou M, Kolettas A, Kessisis G, Beleveslis T, Tsakiridis K, Katsikogiannis N, Kougioumtzi I, Tsiouda T, Argyriou M, Kotsakou M, Zarogoulidis K (2014) Pneumothorax and asthma. J Thorac Dis 6(Suppl 1):S152–S161PubMedPubMedCentral
2.
go back to reference Marks G, Pearce N, Strachan D, Asher I, Ellwood P (2018) The burden of asthma. The Global Asthma Report 2018,14–37 Marks G, Pearce N, Strachan D, Asher I, Ellwood P (2018) The burden of asthma. The Global Asthma Report 2018,14–37
3.
go back to reference Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56PubMed Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16:45–56PubMed
4.
go back to reference Kansler ER, Li MO (2019) Innate lymphocytes-lineage, localization and timing of differentiation. Cell Mol Immunol 16: 627–633 Kansler ER, Li MO (2019) Innate lymphocytes-lineage, localization and timing of differentiation. Cell Mol Immunol 16: 627–633
5.
go back to reference Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT (2014) Innate lymphoid cells and asthma. J Allergy Clin Immunol 133:943–950 quiz 951PubMed Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT (2014) Innate lymphoid cells and asthma. J Allergy Clin Immunol 133:943–950 quiz 951PubMed
6.
go back to reference Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066PubMed Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066PubMed
7.
go back to reference Lanier LL (2013) Shades of grey--the blurring view of innate and adaptive immunity. Nat Rev Immunol 13:73–74PubMed Lanier LL (2013) Shades of grey--the blurring view of innate and adaptive immunity. Nat Rev Immunol 13:73–74PubMed
8.
go back to reference Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149PubMed Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149PubMed
9.
go back to reference Pishdadian A, Varasteh AR, Sankian M (2012) Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma. J Allergy Ther 2012:130937 Pishdadian A, Varasteh AR, Sankian M (2012) Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma. J Allergy Ther 2012:130937
11.
go back to reference Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725PubMed Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725PubMed
12.
go back to reference Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L (1999) Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160:1816–1823PubMed Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L (1999) Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160:1816–1823PubMed
13.
go back to reference Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–2148PubMed Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–2148PubMed
14.
go back to reference Sun B, Zhu L, Tao Y, Sun HX, Li Y, Wang P, Hou Y, Zhao Y, Zhang X, Zhang L, Na N, Zhao Y (2018) Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol 15:782–793PubMedPubMedCentral Sun B, Zhu L, Tao Y, Sun HX, Li Y, Wang P, Hou Y, Zhao Y, Zhang X, Zhang L, Na N, Zhao Y (2018) Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol 15:782–793PubMedPubMedCentral
15.
go back to reference Kuruvilla ME, Lee FE, Lee GB (2019) Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 56:219–233PubMedPubMedCentral Kuruvilla ME, Lee FE, Lee GB (2019) Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 56:219–233PubMedPubMedCentral
16.
go back to reference Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, Chawes B, Kreiner-Moller E, Stage M, Kim C, Tavendale R, Baty F, Pipper CB, Palmer CN, Hakonarsson H (2009) Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 179:179–185PubMed Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, Chawes B, Kreiner-Moller E, Stage M, Kim C, Tavendale R, Baty F, Pipper CB, Palmer CN, Hakonarsson H (2009) Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 179:179–185PubMed
17.
go back to reference Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson W, Consortium G (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221PubMedPubMedCentral Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson W, Consortium G (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221PubMedPubMedCentral
18.
go back to reference Gur M, Hakim F, Bentur L (2017) Better understanding of childhood asthma, towards primary prevention - are we there yet? Consideration of pertinent literature. F1000Research 6:2152PubMedPubMedCentral Gur M, Hakim F, Bentur L (2017) Better understanding of childhood asthma, towards primary prevention - are we there yet? Consideration of pertinent literature. F1000Research 6:2152PubMedPubMedCentral
19.
go back to reference Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, Gruchalla RS, Kattan M, Teach SJ, Pongracic JA, Chmiel JF, Steinbach SF, Calatroni A, Togias A, Thompson KM, Szefler SJ, Sorkness CA (2011) Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 364:1005–1015PubMedPubMedCentral Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, Gruchalla RS, Kattan M, Teach SJ, Pongracic JA, Chmiel JF, Steinbach SF, Calatroni A, Togias A, Thompson KM, Szefler SJ, Sorkness CA (2011) Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 364:1005–1015PubMedPubMedCentral
20.
go back to reference Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, Rosen KE, Eisner MD, Wong DA, Busse W (2011) Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 154:573–582PubMed Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, Rosen KE, Eisner MD, Wong DA, Busse W (2011) Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 154:573–582PubMed
21.
go back to reference Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370:1422–1431PubMed Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370:1422–1431PubMed
22.
go back to reference Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Kasaian MT, Killian KJ, Strinich TX, Watson RM, Y N, Zhou S, Raible D, O’Byrne PM (2011) Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med 183:1007–1014PubMed Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Kasaian MT, Killian KJ, Strinich TX, Watson RM, Y N, Zhou S, Raible D, O’Byrne PM (2011) Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med 183:1007–1014PubMed
23.
go back to reference Takatori H, Makita S, Ito T, Matsuki A, Nakajima H (2018) Regulatory mechanisms of IL-33-ST2-mediated allergic inflammation. Front Immunol 9:2004PubMedPubMedCentral Takatori H, Makita S, Ito T, Matsuki A, Nakajima H (2018) Regulatory mechanisms of IL-33-ST2-mediated allergic inflammation. Front Immunol 9:2004PubMedPubMedCentral
24.
go back to reference Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, L. National Heart, P. Blood Institute’s Severe Asthma Research (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181:315–323PubMed Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, L. National Heart, P. Blood Institute’s Severe Asthma Research (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181:315–323PubMed
25.
go back to reference van Veen IH, Ten Brinke A, Gauw SA, Sterk PJ, Rabe KF, Bel EH (2009) Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study. J Allergy Clin Immunol 124:615–617 617 e611-612PubMed van Veen IH, Ten Brinke A, Gauw SA, Sterk PJ, Rabe KF, Bel EH (2009) Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study. J Allergy Clin Immunol 124:615–617 617 e611-612PubMed
26.
go back to reference Yamamoto M, Tochino Y, Chibana K, Trudeau JB, Holguin F, Wenzel SE (2012) Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clin Exp Allergy 42:760–768PubMed Yamamoto M, Tochino Y, Chibana K, Trudeau JB, Holguin F, Wenzel SE (2012) Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clin Exp Allergy 42:760–768PubMed
27.
go back to reference Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R, Monk P, Bradding P, Wardlaw AJ, Pavord ID, Brightling CE (2008) Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol 121:685–691PubMedPubMedCentral Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R, Monk P, Bradding P, Wardlaw AJ, Pavord ID, Brightling CE (2008) Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol 121:685–691PubMedPubMedCentral
28.
29.
go back to reference Yancey SW, Ortega HG, Keene ON, Mayer B, Gunsoy NB, Brightling CE, Bleecker ER, Haldar P, Pavord ID (2017) Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. J Allergy Clin Immunol 139:1167–1175 e1162PubMed Yancey SW, Ortega HG, Keene ON, Mayer B, Gunsoy NB, Brightling CE, Bleecker ER, Haldar P, Pavord ID (2017) Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. J Allergy Clin Immunol 139:1167–1175 e1162PubMed
30.
go back to reference Wang FP, Xiong XF, Liu T, Li SY, Cheng DY, Mao H (2018) Anti-interleukin 5 therapy for eosinophilic asthma: a meta-analysis of randomized clinical trials. Clin Rev Allergy Immunol 54:318–330PubMed Wang FP, Xiong XF, Liu T, Li SY, Cheng DY, Mao H (2018) Anti-interleukin 5 therapy for eosinophilic asthma: a meta-analysis of randomized clinical trials. Clin Rev Allergy Immunol 54:318–330PubMed
31.
go back to reference Ntontsi P, Papathanassiou E, Loukides S, Bakakos P, Hillas G (2018) Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs 27:179–186PubMed Ntontsi P, Papathanassiou E, Loukides S, Bakakos P, Hillas G (2018) Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs 27:179–186PubMed
32.
go back to reference Finnerty JP, Wood-Baker R, Thomson H, Holgate ST (1992) Role of leukotrienes in exercise-induced asthma. Inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 145:746–749PubMed Finnerty JP, Wood-Baker R, Thomson H, Holgate ST (1992) Role of leukotrienes in exercise-induced asthma. Inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 145:746–749PubMed
33.
go back to reference Reiss TF, Hill JB, Harman E, Zhang J, Tanaka WK, Bronsky E, Guerreiro D, Hendeles L (1997) Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinyl leukotriene receptor antagonist. Thorax 52:1030–1035PubMedPubMedCentral Reiss TF, Hill JB, Harman E, Zhang J, Tanaka WK, Bronsky E, Guerreiro D, Hendeles L (1997) Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinyl leukotriene receptor antagonist. Thorax 52:1030–1035PubMedPubMedCentral
34.
go back to reference Parker JM, Oh CK, LaForce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA, M.-C.T. Group (2011) Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulmonary Med 11:14 Parker JM, Oh CK, LaForce C, Miller SD, Pearlman DS, Le C, Robbie GJ, White WI, White B, Molfino NA, M.-C.T. Group (2011) Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulmonary Med 11:14
35.
go back to reference Chung KF (2016) Neutrophilic asthma: a distinct target for treatment? Lancet Respir Med 4:765–767PubMed Chung KF (2016) Neutrophilic asthma: a distinct target for treatment? Lancet Respir Med 4:765–767PubMed
36.
go back to reference Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL (2013) Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188:1294–1302PubMed Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL (2013) Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188:1294–1302PubMed
37.
go back to reference Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, Investigators TA (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 179:549–558PubMed Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, Investigators TA (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 179:549–558PubMed
38.
go back to reference Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155PubMed Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155PubMed
39.
go back to reference Tliba O, Panettieri RA Jr (2018) Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 143: 1287-1294 Tliba O, Panettieri RA Jr (2018) Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 143: 1287-1294
40.
go back to reference Shum BO, Mackay CR, Gorgun CZ, Frost MJ, Kumar RK, Hotamisligil GS, Rolph MS (2006) The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116:2183–2192PubMedPubMedCentral Shum BO, Mackay CR, Gorgun CZ, Frost MJ, Kumar RK, Hotamisligil GS, Rolph MS (2006) The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. J Clin Invest 116:2183–2192PubMedPubMedCentral
42.
go back to reference Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224PubMedPubMedCentral Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224PubMedPubMedCentral
43.
go back to reference Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001–1008PubMed Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001–1008PubMed
46.
47.
go back to reference Born WK, Huang Y, Jin N, Huang H, O’Brien RL (2010) Balanced approach of gammadelta T cells to type 2 immunity. Immunol Cell Biol 88:269–274PubMed Born WK, Huang Y, Jin N, Huang H, O’Brien RL (2010) Balanced approach of gammadelta T cells to type 2 immunity. Immunol Cell Biol 88:269–274PubMed
48.
go back to reference Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O’Brien RL, Born WK (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol 183:849–855PubMedPubMedCentral Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O’Brien RL, Born WK (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol 183:849–855PubMedPubMedCentral
49.
go back to reference Krug N, Erpenbeck VJ, Balke K, Petschallies J, Tschernig T, Hohlfeld JM, Fabel H (2001) Cytokine profile of bronchoalveolar lavage-derived CD4(+), CD8(+), and gammadelta T cells in people with asthma after segmental allergen challenge. Am J Respir Cell Mol Biol 25:125–131PubMed Krug N, Erpenbeck VJ, Balke K, Petschallies J, Tschernig T, Hohlfeld JM, Fabel H (2001) Cytokine profile of bronchoalveolar lavage-derived CD4(+), CD8(+), and gammadelta T cells in people with asthma after segmental allergen challenge. Am J Respir Cell Mol Biol 25:125–131PubMed
50.
go back to reference Caccamo N, Battistini L, Bonneville M, Poccia F, Fournie JJ, Meraviglia S, Borsellino G, Kroczek RA, La Mendola C, Scotet E, Dieli F, Salerno A (2006) CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 177:5290–5295PubMed Caccamo N, Battistini L, Bonneville M, Poccia F, Fournie JJ, Meraviglia S, Borsellino G, Kroczek RA, La Mendola C, Scotet E, Dieli F, Salerno A (2006) CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 177:5290–5295PubMed
51.
go back to reference Qi Q, Xia M, Hu J, Hicks E, Iyer A, Xiong N, August A (2009) Enhanced development of CD4+ gammadelta T cells in the absence of Itk results in elevated IgE production. Blood 114:564–571PubMedPubMedCentral Qi Q, Xia M, Hu J, Hicks E, Iyer A, Xiong N, August A (2009) Enhanced development of CD4+ gammadelta T cells in the absence of Itk results in elevated IgE production. Blood 114:564–571PubMedPubMedCentral
52.
go back to reference Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341PubMed Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341PubMed
53.
go back to reference Cui ZH, Joetham A, Aydintug MK, Hahn YS, Born WK, Gelfand EW (2003) Reversal of allergic airway hyperreactivity after long-term allergen challenge depends on gammadelta T cells. Am J Respir Crit Care Med 168:1324–1332PubMed Cui ZH, Joetham A, Aydintug MK, Hahn YS, Born WK, Gelfand EW (2003) Reversal of allergic airway hyperreactivity after long-term allergen challenge depends on gammadelta T cells. Am J Respir Crit Care Med 168:1324–1332PubMed
54.
go back to reference Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM, Papi A, Stanciu LA, Johnston SL, Bartlett NW (2013) gammadeltaT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 6:1091–1100PubMedPubMedCentral Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM, Papi A, Stanciu LA, Johnston SL, Bartlett NW (2013) gammadeltaT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 6:1091–1100PubMedPubMedCentral
55.
go back to reference Guggino G, Scotta C, Lombardi G, Dieli F, Sireci G (2017) Invariant natural killer T cells treated with rapamycin or transforming growth factor-beta acquire a regulatory function and suppress T effector lymphocytes. Cell Mol Immunol 14:392–394PubMed Guggino G, Scotta C, Lombardi G, Dieli F, Sireci G (2017) Invariant natural killer T cells treated with rapamycin or transforming growth factor-beta acquire a regulatory function and suppress T effector lymphocytes. Cell Mol Immunol 14:392–394PubMed
56.
go back to reference Laloux V, Beaudoin L, Ronet C, Lehuen A (2002) Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol 168:3251–3258PubMed Laloux V, Beaudoin L, Ronet C, Lehuen A (2002) Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J Immunol 168:3251–3258PubMed
57.
go back to reference Umetsu DT, Dekruyff RH (2010) Natural killer T cells are important in the pathogenesis of asthma: the many pathways to asthma. J Allergy Clin Immunol 125:975–979PubMedPubMedCentral Umetsu DT, Dekruyff RH (2010) Natural killer T cells are important in the pathogenesis of asthma: the many pathways to asthma. J Allergy Clin Immunol 125:975–979PubMedPubMedCentral
58.
go back to reference Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640PubMedPubMedCentral Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640PubMedPubMedCentral
59.
go back to reference Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588PubMed Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588PubMed
60.
go back to reference Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, Shore SA, Umetsu DT (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393PubMedPubMedCentral Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, Shore SA, Umetsu DT (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393PubMedPubMedCentral
61.
go back to reference Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci U S A 103:2782–2787PubMedPubMedCentral Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci U S A 103:2782–2787PubMedPubMedCentral
62.
go back to reference Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417PubMed Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417PubMed
63.
go back to reference Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M, DeKruyff RH, Umetsu DT (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129PubMed Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M, DeKruyff RH, Umetsu DT (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129PubMed
64.
go back to reference Pham-Thi N, de Blic J, Leite-de-Moraes MC (2006) Invariant natural killer T cells in bronchial asthma. N Engl J Med 354:2613–2616 author reply 2613-2616PubMed Pham-Thi N, de Blic J, Leite-de-Moraes MC (2006) Invariant natural killer T cells in bronchial asthma. N Engl J Med 354:2613–2616 author reply 2613-2616PubMed
65.
go back to reference Thomas SY, Lilly CM, Luster AD (2006) Invariant natural killer T cells in bronchial asthma. N Engl J Med 354:2613–2616 author reply 2613-2616PubMed Thomas SY, Lilly CM, Luster AD (2006) Invariant natural killer T cells in bronchial asthma. N Engl J Med 354:2613–2616 author reply 2613-2616PubMed
66.
go back to reference Hamzaoui A, Cheik Rouhou S, Grairi H, Abid H, Ammar J, Chelbi H, Hamzaoui K (2006) NKT cells in the induced sputum of severe asthmatics. Mediat Inflamm 2006:71214 Hamzaoui A, Cheik Rouhou S, Grairi H, Abid H, Ammar J, Chelbi H, Hamzaoui K (2006) NKT cells in the induced sputum of severe asthmatics. Mediat Inflamm 2006:71214
67.
go back to reference Pham-Thi N, de Blic J, Le Bourgeois M, Dy M, Scheinmann P, Leite-de-Moraes MC (2006) Enhanced frequency of immunoregulatory invariant natural killer T cells in the airways of children with asthma. J Allergy Clin Immunol 117:217–218PubMed Pham-Thi N, de Blic J, Le Bourgeois M, Dy M, Scheinmann P, Leite-de-Moraes MC (2006) Enhanced frequency of immunoregulatory invariant natural killer T cells in the airways of children with asthma. J Allergy Clin Immunol 117:217–218PubMed
68.
go back to reference Mutalithas K, Croudace J, Guillen C, Siddiqui S, Thickett D, Wardlaw A, Lammas D, Brightling C (2007) Bronchoalveolar lavage invariant natural killer T cells are not increased in asthma. J Allergy Clin Immunol 119:1274–1276PubMed Mutalithas K, Croudace J, Guillen C, Siddiqui S, Thickett D, Wardlaw A, Lammas D, Brightling C (2007) Bronchoalveolar lavage invariant natural killer T cells are not increased in asthma. J Allergy Clin Immunol 119:1274–1276PubMed
69.
go back to reference Matangkasombut P, Marigowda G, Ervine A, Idris L, Pichavant M, Kim HY, Yasumi T, Wilson SB, DeKruyff RH, Faul JL, Israel E, Akbari O, Umetsu DT (2009) Natural killer T cells in the lungs of patients with asthma. J Allergy Clin Immunol 123:1181–1185PubMedPubMedCentral Matangkasombut P, Marigowda G, Ervine A, Idris L, Pichavant M, Kim HY, Yasumi T, Wilson SB, DeKruyff RH, Faul JL, Israel E, Akbari O, Umetsu DT (2009) Natural killer T cells in the lungs of patients with asthma. J Allergy Clin Immunol 123:1181–1185PubMedPubMedCentral
70.
go back to reference Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD (2007) Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol 179:1901–1912PubMed Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD (2007) Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol 179:1901–1912PubMed
71.
go back to reference Vijayanand P, Seumois G, Pickard C, Powell RM, Angco G, Sammut D, Gadola SD, Friedmann PS, Djukanovic R (2007) Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 356:1410–1422PubMed Vijayanand P, Seumois G, Pickard C, Powell RM, Angco G, Sammut D, Gadola SD, Friedmann PS, Djukanovic R (2007) Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 356:1410–1422PubMed
72.
go back to reference Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, Lantz O (2016) MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 272:120–138PubMed Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, Lantz O (2016) MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 272:120–138PubMed
73.
go back to reference Hinks TS, Zhou X, Staples KJ, Dimitrov BD, Manta A, Petrossian T, Lum PY, Smith CG, Ward JA, Howarth PH, Walls AF, Gadola SD, Djukanovic R (2015) Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J Allergy Clin Immunol 136:323–333PubMedPubMedCentral Hinks TS, Zhou X, Staples KJ, Dimitrov BD, Manta A, Petrossian T, Lum PY, Smith CG, Ward JA, Howarth PH, Walls AF, Gadola SD, Djukanovic R (2015) Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J Allergy Clin Immunol 136:323–333PubMedPubMedCentral
74.
go back to reference Chandra S, Wingender G, Greenbaum JA, Khurana A, Gholami AM, Ganesan AP, Rosenbach M, Jaffee K, Gern JE, Wood R, O’Connor G, Sandel M, Kattan M, Bacharier L, Togias A, Horner AA, Kronenberg M (2018) Development of asthma in inner-city children: possible roles of MAIT cells and variation in the home environment. J Immunol 200:1995–2003PubMedPubMedCentral Chandra S, Wingender G, Greenbaum JA, Khurana A, Gholami AM, Ganesan AP, Rosenbach M, Jaffee K, Gern JE, Wood R, O’Connor G, Sandel M, Kattan M, Bacharier L, Togias A, Horner AA, Kronenberg M (2018) Development of asthma in inner-city children: possible roles of MAIT cells and variation in the home environment. J Immunol 200:1995–2003PubMedPubMedCentral
75.
go back to reference Lezmi G, Abou Taam R, Dietrich C, Chatenoud L, de Blic J, Leite-de-Moraes M (2018) Circulating IL-17-producing mucosal-associated invariant T cells (MAIT) are associated with symptoms in children with asthma. Clin Immunol 188:7–11PubMed Lezmi G, Abou Taam R, Dietrich C, Chatenoud L, de Blic J, Leite-de-Moraes M (2018) Circulating IL-17-producing mucosal-associated invariant T cells (MAIT) are associated with symptoms in children with asthma. Clin Immunol 188:7–11PubMed
76.
go back to reference Issaoui H, Ghazzaui N, Saintamand A, Carrion C, Oblet C, Denizot Y (2018) The IgH 3′ regulatory region super-enhancer does not control IgA class switch recombination in the B1 lineage. Cell Mol Immunol 15:289–291PubMed Issaoui H, Ghazzaui N, Saintamand A, Carrion C, Oblet C, Denizot Y (2018) The IgH 3′ regulatory region super-enhancer does not control IgA class switch recombination in the B1 lineage. Cell Mol Immunol 15:289–291PubMed
77.
go back to reference Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11:34–46PubMed Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11:34–46PubMed
78.
79.
go back to reference Quach TD, Rodriguez-Zhurbenko N, Hopkins TJ, Guo X, Hernandez AM, Li W, Rothstein TL (2016) Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol 196:1060–1069PubMedPubMedCentral Quach TD, Rodriguez-Zhurbenko N, Hopkins TJ, Guo X, Hernandez AM, Li W, Rothstein TL (2016) Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol 196:1060–1069PubMedPubMedCentral
80.
go back to reference Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H (2013) Human B-1 cells take the stage. Ann N Y Acad Sci 1285:97–114PubMedPubMedCentral Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H (2013) Human B-1 cells take the stage. Ann N Y Acad Sci 1285:97–114PubMedPubMedCentral
81.
go back to reference Kawikova I, Paliwal V, Szczepanik M, Itakura A, Fukui M, Campos RA, Geba GP, Homer RJ, Iliopoulou BP, Pober JS, Tsuji RF, Askenase PW (2004) Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113:234–245PubMedPubMedCentral Kawikova I, Paliwal V, Szczepanik M, Itakura A, Fukui M, Campos RA, Geba GP, Homer RJ, Iliopoulou BP, Pober JS, Tsuji RF, Askenase PW (2004) Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113:234–245PubMedPubMedCentral
82.
go back to reference Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335PubMed Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335PubMed
83.
go back to reference Cerutti A, Cols M, Puga I (2013) Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 13:118–132PubMedPubMedCentral Cerutti A, Cols M, Puga I (2013) Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 13:118–132PubMedPubMedCentral
84.
go back to reference Abel AM, Yang C, Thakar MS, Malarkannan S (2018) Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 9:1869PubMedPubMedCentral Abel AM, Yang C, Thakar MS, Malarkannan S (2018) Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 9:1869PubMedPubMedCentral
85.
go back to reference Peng H, Sun R (2017) Liver-resident NK cells and their potential functions. Cell Mol Immunol 14: 890–894 Peng H, Sun R (2017) Liver-resident NK cells and their potential functions. Cell Mol Immunol 14: 890–894
87.
go back to reference Zhou J, Peng H, Li K, Qu K, Wang B, Wu Y, Ye L, Dong Z, Wei H, Sun R, Tian Z (2019) Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 Axis. Immunity 50:403–417 e404PubMed Zhou J, Peng H, Li K, Qu K, Wang B, Wu Y, Ye L, Dong Z, Wei H, Sun R, Tian Z (2019) Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 Axis. Immunity 50:403–417 e404PubMed
88.
90.
go back to reference Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ, Hong S, Van Kaer L, Ljunggren HG, Korsgren O (1999) Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189:553–562PubMedPubMedCentral Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ, Hong S, Van Kaer L, Ljunggren HG, Korsgren O (1999) Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189:553–562PubMedPubMedCentral
91.
go back to reference Wei H, Zhang J, Xiao W, Feng J, Sun R, Tian Z (2005) Involvement of human natural killer cells in asthma pathogenesis: natural killer 2 cells in type 2 cytokine predominance. J Allergy Clin Immunol 115:841–847PubMed Wei H, Zhang J, Xiao W, Feng J, Sun R, Tian Z (2005) Involvement of human natural killer cells in asthma pathogenesis: natural killer 2 cells in type 2 cytokine predominance. J Allergy Clin Immunol 115:841–847PubMed
92.
go back to reference Kusaka Y, Sato K, Zhang Q, Morita A, Kasahara T, Yanagihara Y (1997) Association of natural killer cell activity with serum IgE. Int Arch Allergy Immunol 112:331–335PubMed Kusaka Y, Sato K, Zhang Q, Morita A, Kasahara T, Yanagihara Y (1997) Association of natural killer cell activity with serum IgE. Int Arch Allergy Immunol 112:331–335PubMed
93.
go back to reference Farhadi N, Lambert L, Triulzi C, Openshaw PJ, Guerra N, Culley FJ (2014) Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J Allergy Clin Immunol 133:827–835 e823PubMedPubMedCentral Farhadi N, Lambert L, Triulzi C, Openshaw PJ, Guerra N, Culley FJ (2014) Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J Allergy Clin Immunol 133:827–835 e823PubMedPubMedCentral
94.
go back to reference Simons B, Ferrini ME, Carvalho S, Bassett DJ, Jaffar Z, Roberts K (2017) PGI2 Controls pulmonary NK cells that prevent airway sensitization to house dust mite allergen. J Immunol 198:461–471PubMed Simons B, Ferrini ME, Carvalho S, Bassett DJ, Jaffar Z, Roberts K (2017) PGI2 Controls pulmonary NK cells that prevent airway sensitization to house dust mite allergen. J Immunol 198:461–471PubMed
95.
go back to reference Ferrini ME, Hong S, Stierle A, Stierle D, Stella N, Roberts K, Jaffar Z (2017) CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy 72:937–947PubMedPubMedCentral Ferrini ME, Hong S, Stierle A, Stierle D, Stella N, Roberts K, Jaffar Z (2017) CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy 72:937–947PubMedPubMedCentral
96.
go back to reference Bi J, Cui L, Yu G, Yang X, Chen Y, Wan X (2017) NK Cells alleviate lung inflammation by negatively regulating group 2 innate lymphoid cells. J Immunol 198:3336–3344PubMed Bi J, Cui L, Yu G, Yang X, Chen Y, Wan X (2017) NK Cells alleviate lung inflammation by negatively regulating group 2 innate lymphoid cells. J Immunol 198:3336–3344PubMed
97.
go back to reference Haworth O, Cernadas M, Levy BD (2011) NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. J Immunol 186:6129–6135PubMed Haworth O, Cernadas M, Levy BD (2011) NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. J Immunol 186:6129–6135PubMed
98.
go back to reference E. Haspeslagh, M.J. van Helden, K. Deswarte, S. De Prijck, J. van Moorleghem, L. Boon, H. Hammad, E. Vivier, B.N. Lambrecht, Role of NKp46(+) natural killer cells in house dust mite-driven asthma, EMBO molecular medicine, 10 (2018). E. Haspeslagh, M.J. van Helden, K. Deswarte, S. De Prijck, J. van Moorleghem, L. Boon, H. Hammad, E. Vivier, B.N. Lambrecht, Role of NKp46(+) natural killer cells in house dust mite-driven asthma, EMBO molecular medicine, 10 (2018).
99.
go back to reference Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Norel X, Sallenave JM, Allez M, Graf T, Hendriks RW, Casanova JL, Amit I, Yssel H, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168:1086–1100 e1010 Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Norel X, Sallenave JM, Allez M, Graf T, Hendriks RW, Casanova JL, Amit I, Yssel H, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168:1086–1100 e1010
100.
go back to reference Kim CH, Hashimoto-Hill S, Kim M (2016) Migration and tissue tropism of innate lymphoid cells. Trends Immunol 37:68–79PubMed Kim CH, Hashimoto-Hill S, Kim M (2016) Migration and tissue tropism of innate lymphoid cells. Trends Immunol 37:68–79PubMed
101.
go back to reference Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, Monticelli LA, Artis D (2019) Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50:505–519 e504PubMedPubMedCentral Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, Monticelli LA, Artis D (2019) Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50:505–519 e504PubMedPubMedCentral
102.
go back to reference Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Susac B, Ling L, Leiner I, Pamer EG (2015) Innate immune defenses mediated by two ILC subsets are critical for protection against acute clostridium difficile infection. Cell Host Microbe 18:27–37PubMedPubMedCentral Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Susac B, Ling L, Leiner I, Pamer EG (2015) Innate immune defenses mediated by two ILC subsets are critical for protection against acute clostridium difficile infection. Cell Host Microbe 18:27–37PubMedPubMedCentral
103.
go back to reference Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356PubMed Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356PubMed
104.
go back to reference Li Y, Chen S, Chi Y, Yang Y, Chen X, Wang H, Lv Z, Wang J, Yuan L, Huang P, Huang K, Corrigan CJ, Wang W, Ying S (2019) Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16. Cell Mol Immunol 16:75–86PubMed Li Y, Chen S, Chi Y, Yang Y, Chen X, Wang H, Lv Z, Wang J, Yuan L, Huang P, Huang K, Corrigan CJ, Wang W, Ying S (2019) Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16. Cell Mol Immunol 16:75–86PubMed
105.
go back to reference Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062PubMed Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062PubMed
106.
go back to reference Saenz SA, Siracusa MC, Monticelli LA, Ziegler CG, Kim BS, Brestoff JR, Peterson LW, Wherry EJ, Goldrath AW, Bhandoola A, Artis D (2013) IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J Exp Med 210:1823–1837PubMedPubMedCentral Saenz SA, Siracusa MC, Monticelli LA, Ziegler CG, Kim BS, Brestoff JR, Peterson LW, Wherry EJ, Goldrath AW, Bhandoola A, Artis D (2013) IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J Exp Med 210:1823–1837PubMedPubMedCentral
107.
go back to reference Zhu J (2018) Mysterious ILC2 tissue adaptation. Nat Immunol 19:1042–1044PubMed Zhu J (2018) Mysterious ILC2 tissue adaptation. Nat Immunol 19:1042–1044PubMed
108.
go back to reference Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang HE, Vaka D, Eckalbar WL, Molofsky AB, Erle DJ, Locksley RM (2018) Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol 19:1093–1099PubMedPubMedCentral Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang HE, Vaka D, Eckalbar WL, Molofsky AB, Erle DJ, Locksley RM (2018) Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol 19:1093–1099PubMedPubMedCentral
109.
go back to reference Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116PubMed Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116PubMed
110.
go back to reference Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, Savage PB, McKenzie AN, Smith DE, Rottman JB, DeKruyff RH, Umetsu DT (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227 e211-216PubMed Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, Savage PB, McKenzie AN, Smith DE, Rottman JB, DeKruyff RH, Umetsu DT (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227 e211-216PubMed
111.
go back to reference Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132:205–213PubMedPubMedCentral Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132:205–213PubMedPubMedCentral
112.
go back to reference Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN (2012) Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129:191–198 e191-194PubMed Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN (2012) Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129:191–198 e191-194PubMed
113.
go back to reference Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513PubMed Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513PubMed
114.
go back to reference Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463PubMed Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463PubMed
115.
go back to reference Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638PubMedPubMedCentral Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638PubMedPubMedCentral
116.
go back to reference Ozyigit LP, Morita H, Akdis M (2015) Innate lymphocyte cells in asthma phenotypes. Clin Trans Allergy 5:23 Ozyigit LP, Morita H, Akdis M (2015) Innate lymphocyte cells in asthma phenotypes. Clin Trans Allergy 5:23
117.
go back to reference Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ, Liew FY (2014) Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol 192:2442–2448PubMed Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ, Liew FY (2014) Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol 192:2442–2448PubMed
118.
go back to reference Drake LY, Iijima K, Kita H (2014) Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy 69:1300–1307PubMedPubMedCentral Drake LY, Iijima K, Kita H (2014) Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy 69:1300–1307PubMedPubMedCentral
119.
go back to reference Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, Ogg GS, Fallon PG, McKenzie AN (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–295PubMedPubMedCentral Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, Ogg GS, Fallon PG, McKenzie AN (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–295PubMedPubMedCentral
120.
go back to reference Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, Liu YJ, Howie KJ, Denburg JA, Gauvreau GM, Delespesse G (2009) CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 123:472–478PubMed Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, Liu YJ, Howie KJ, Denburg JA, Gauvreau GM, Delespesse G (2009) CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol 123:472–478PubMed
121.
go back to reference Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, West N, Tung S, Seddon BP, Uhlig HH, Powrie F (2016) ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 5:e10066PubMedPubMedCentral Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, West N, Tung S, Seddon BP, Uhlig HH, Powrie F (2016) ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 5:e10066PubMedPubMedCentral
122.
go back to reference Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375PubMedPubMedCentral Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375PubMedPubMedCentral
123.
go back to reference Mjosberg J, Spits H (2016) Human innate lymphoid cells. J Allergy Clin Immunol 138:1265–1276PubMed Mjosberg J, Spits H (2016) Human innate lymphoid cells. J Allergy Clin Immunol 138:1265–1276PubMed
124.
go back to reference Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, DeKruyff RH, Umetsu DT (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 20:54–61PubMed Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, DeKruyff RH, Umetsu DT (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 20:54–61PubMed
125.
go back to reference Bando JK, Liang HE, Locksley RM (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 16:153–160PubMed Bando JK, Liang HE, Locksley RM (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 16:153–160PubMed
127.
go back to reference Withers DR, Hepworth MR (2017) Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol 8:1298PubMedPubMedCentral Withers DR, Hepworth MR (2017) Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. Front Immunol 8:1298PubMedPubMedCentral
128.
go back to reference Mackley EC, Houston S, Marriott CL, Halford EE, Lucas B, Cerovic V, Filbey KJ, Maizels RM, Hepworth MR, Sonnenberg GF, Milling S, Withers DR (2015) CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 6:5862PubMedPubMedCentral Mackley EC, Houston S, Marriott CL, Halford EE, Lucas B, Cerovic V, Filbey KJ, Maizels RM, Hepworth MR, Sonnenberg GF, Milling S, Withers DR (2015) CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 6:5862PubMedPubMedCentral
129.
go back to reference Zhang Y, Kim TJ, Wroblewska JA, Tesic V, Upadhyay V, Weichselbaum RR, Tumanov AV, Tang H, Guo X, Tang H, Fu YX (2018) Type 3 innate lymphoid cell-derived lymphotoxin prevents microbiota-dependent inflammation. Cell Mol Immunol 15:697–709PubMed Zhang Y, Kim TJ, Wroblewska JA, Tesic V, Upadhyay V, Weichselbaum RR, Tumanov AV, Tang H, Guo X, Tang H, Fu YX (2018) Type 3 innate lymphoid cell-derived lymphotoxin prevents microbiota-dependent inflammation. Cell Mol Immunol 15:697–709PubMed
130.
go back to reference Veillette A, Dong Z, Latour S (2007) Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27:698–710PubMed Veillette A, Dong Z, Latour S (2007) Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27:698–710PubMed
131.
go back to reference Xiao TS (2017) Innate immunity and inflammation. Cell Mol Immunol 14:1–3PubMed Xiao TS (2017) Innate immunity and inflammation. Cell Mol Immunol 14:1–3PubMed
Metadata
Title
Innate-like Lymphocytes and Innate Lymphoid Cells in Asthma
Authors
Chao Huang
Fengqi Li
Jian Wang
Zhigang Tian
Publication date
01-12-2020
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 3/2020
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-019-08773-6

Other articles of this Issue 3/2020

Clinical Reviews in Allergy & Immunology 3/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine