Skip to main content
Top
Published in: Journal of Occupational Medicine and Toxicology 1/2020

Open Access 01-12-2020 | Bronchial Asthma | Study protocol

Outdoor air pollution from industrial chemicals causing new onset of asthma or COPD: a systematic review protocol

Authors: Harald Lux, Xaver Baur, Lygia Therese Budnik, Astrid Heutelbeck, João Paulo Teixeira, Emeri Neumann, Diana Adliene, Judita Puišo, David Lucas, Jakob Löndahl, Athanasios Damialis, Ozlem Goksel, Hans Orru

Published in: Journal of Occupational Medicine and Toxicology | Issue 1/2020

Login to get access

Abstract

Background

Until today, industrial sources contribute to the multifaceted contamination of environmental air. Exposure to air pollutants has the potential to initiate and promote asthma and chronic obstructive pulmonary disease (COPD). At global scale, both entities cause the majority of about 4 million annual deaths by respiratory disease. However, we identified industrial contamination as a subgroup of air pollution that may be associated with this burden and is underinvestigated in research. Therefore, the aim of this study is to investigate associations between substances industrially released into environmental air and the occurrence of asthma and COPD in the human population. Here we present the protocol for our systematic review of the current evidence.

Methods

The following determinations will be applied during the systematic review process and are specified in the protocol that complies with the PRISMA-P statement. Populations of children and adults, as well as outdoor workers, exposed to industrially released air pollutants are of interest. Eligible studies may include subjects as controls who are non- or less exposed to the investigated air pollutants. The outcomes new-onset asthma and/or COPD investigated with risk ratio, odds ratio, hazard ratio, incidence rate ratio, cumulative incidence, and incidence rate are eligible. We will search the electronic literature databases EMBASE, MEDLINE, and Web of Science for peer-reviewed reports of incidence studies and incidence case-control studies. After systematic sorting of initial records, included studies will be subjected to quality assessment. Data will be synthesized qualitatively and, if appropriate, quantitatively for risk ratio and odds ratio. We will maintain and provide a PRISMA report.

Discussion

Results of this systematic review may indicate alterations of incidence and risk of asthma and/or COPD in populations within industrial exposure radiuses including outdoor workplaces. Specific causal substances and compositions will be identified, but results will depend on the exposure assessment of the eligible studies. Our approach covers effects of industrial contributions to overall air pollution if studies reportedly attribute investigated emissions to industry. Results of this study may raise the question wether the available higher-level evidence sufficiently covers the current scale of industrial exposure scenarios and their potential harm to respiratory health.

Trial registration

This protocol was registered in PROSPERO, registration number CRD42020151573.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.CrossRef
2.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRef
4.
go back to reference World Health Organisation (WHO). Global status report on noncommunicable diseases. Geneva: World Health Organisation; 2010. World Health Organisation (WHO). Global status report on noncommunicable diseases. Geneva: World Health Organisation; 2010.
5.
go back to reference World Health Organisation (WHO). Ambient air pollution: a global assessment of exposure and burden of disease. Geneva: World Health Organisation; 2016. World Health Organisation (WHO). Ambient air pollution: a global assessment of exposure and burden of disease. Geneva: World Health Organisation; 2016.
6.
go back to reference Wichmann F, Muller A, Busi L, Cianni N, Massolo L, Schlink U, et al. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immunol. 2009;123(3):632–8.CrossRef Wichmann F, Muller A, Busi L, Cianni N, Massolo L, Schlink U, et al. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immunol. 2009;123(3):632–8.CrossRef
7.
go back to reference Khreis H, Cirach M, Mueller N, de Hoogh K, Hoek G, Nieuwenhuijsen MJ, et al. Outdoor air pollution and the burden of childhood asthma across Europe. Eur Respir J. 2019;54(4):1802194.CrossRef Khreis H, Cirach M, Mueller N, de Hoogh K, Hoek G, Nieuwenhuijsen MJ, et al. Outdoor air pollution and the burden of childhood asthma across Europe. Eur Respir J. 2019;54(4):1802194.CrossRef
8.
go back to reference Khreis H, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.CrossRef Khreis H, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.CrossRef
9.
go back to reference Kogevinas M, Zock JP, Jarvis D, Kromhout H, Lillienberg L, Plana E, et al. Exposure to substances in the workplace and new-onset asthma: an international prospective population-based study (ECRHS-II). Lancet. 2007;370(9584):336–41.CrossRef Kogevinas M, Zock JP, Jarvis D, Kromhout H, Lillienberg L, Plana E, et al. Exposure to substances in the workplace and new-onset asthma: an international prospective population-based study (ECRHS-II). Lancet. 2007;370(9584):336–41.CrossRef
10.
go back to reference Blanc PD, Annesi-Maesano I, Balmes JR, Cummings KJ, Fishwick D, Miedinger D, et al. The occupational burden of nonmalignant respiratory diseases. An official American Thoracic Society and European Respiratory Society statement. Am J Respir Crit Care Med. 2019;199(11):1312–34.CrossRef Blanc PD, Annesi-Maesano I, Balmes JR, Cummings KJ, Fishwick D, Miedinger D, et al. The occupational burden of nonmalignant respiratory diseases. An official American Thoracic Society and European Respiratory Society statement. Am J Respir Crit Care Med. 2019;199(11):1312–34.CrossRef
11.
go back to reference Baur X, Bakehe P, Vellguth H. Bronchial asthma and COPD due to irritants in the workplace - an evidence-based approach. J Occup Med Toxicol. 2012;7(1):19.CrossRef Baur X, Bakehe P, Vellguth H. Bronchial asthma and COPD due to irritants in the workplace - an evidence-based approach. J Occup Med Toxicol. 2012;7(1):19.CrossRef
12.
go back to reference Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3.PubMed Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club. 1995;123(3):A12–3.PubMed
13.
go back to reference Rovira E, Cuadras A, Aguilar X, Esteban L, Borras-Santos A, Zock JP, et al. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ Res. 2014;133:156–63.CrossRef Rovira E, Cuadras A, Aguilar X, Esteban L, Borras-Santos A, Zock JP, et al. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ Res. 2014;133:156–63.CrossRef
14.
go back to reference Pearce N. Classification of epidemiological study designs. Int J Epidemiol. 2012;41(2):393–7.CrossRef Pearce N. Classification of epidemiological study designs. Int J Epidemiol. 2012;41(2):393–7.CrossRef
16.
go back to reference Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, et al. Recommendations for a standardized pulmonary function report. An official American Thoracic Society technical statement. Am J Respir Crit Care Med. 2017;196(11):1463–72.CrossRef Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, et al. Recommendations for a standardized pulmonary function report. An official American Thoracic Society technical statement. Am J Respir Crit Care Med. 2017;196(11):1463–72.CrossRef
17.
go back to reference Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRef Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRef
20.
go back to reference Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.CrossRef Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.CrossRef
22.
go back to reference Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.CrossRef Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.CrossRef
24.
go back to reference Shrier I, Steele R. Understanding the relationship between risks and odds ratio. Clin J Sport Med. 2006;16(2):107–10.CrossRef Shrier I, Steele R. Understanding the relationship between risks and odds ratio. Clin J Sport Med. 2006;16(2):107–10.CrossRef
26.
go back to reference Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111.CrossRef Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111.CrossRef
27.
go back to reference Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.CrossRef
28.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef
29.
go back to reference Lefebvre C, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf MI, et al. Searching for and selecting studies. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane handbook for systematic reviews of interventions; 2019. p. 67–107. https://doi.org/10.1002/9781119536604.ch4. Accessed 1 Mar 2020.CrossRef Lefebvre C, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf MI, et al. Searching for and selecting studies. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane handbook for systematic reviews of interventions; 2019. p. 67–107. https://​doi.​org/​10.​1002/​9781119536604.​ch4. Accessed 1 Mar 2020.CrossRef
30.
go back to reference Zou B, Wilson JG, Zhan FB, Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit. 2009;11(3):475–90.CrossRef Zou B, Wilson JG, Zhan FB, Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit. 2009;11(3):475–90.CrossRef
31.
go back to reference Gorai AK, Tchounwou PB, Tuluri F. Association between ambient air pollution and asthma prevalence in different population groups residing in eastern Texas, USA. Int J Environ Res Public Health. 2016;13(4):378.CrossRef Gorai AK, Tchounwou PB, Tuluri F. Association between ambient air pollution and asthma prevalence in different population groups residing in eastern Texas, USA. Int J Environ Res Public Health. 2016;13(4):378.CrossRef
32.
go back to reference Lindgren A, Stroh E, Bjork J, Jakobsson K. Asthma incidence in children growing up close to traffic: a registry-based birth cohort. Environ Health. 2013;12:91.CrossRef Lindgren A, Stroh E, Bjork J, Jakobsson K. Asthma incidence in children growing up close to traffic: a registry-based birth cohort. Environ Health. 2013;12:91.CrossRef
33.
go back to reference Houot J, Marquant F, Goujon S, Faure L, Honoré C, Roth MH, et al. Residential proximity to heavy-traffic roads, benzene exposure, and childhood leukemia-the GEOCAP study, 2002-2007. Am J Epidemiol. 2015;182(8):685–93.CrossRef Houot J, Marquant F, Goujon S, Faure L, Honoré C, Roth MH, et al. Residential proximity to heavy-traffic roads, benzene exposure, and childhood leukemia-the GEOCAP study, 2002-2007. Am J Epidemiol. 2015;182(8):685–93.CrossRef
34.
go back to reference Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, et al. Outdoor air pollution and new-onset airway disease. An official American Thoracic Society workshop report. Ann Am Thorac Soc. 2020;17(4):387–98.CrossRef Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, et al. Outdoor air pollution and new-onset airway disease. An official American Thoracic Society workshop report. Ann Am Thorac Soc. 2020;17(4):387–98.CrossRef
35.
go back to reference Vedal S. Ambient particles and health: lines that divide. J Air Waste Manag Assoc. 1997;47(5):551–81.CrossRef Vedal S. Ambient particles and health: lines that divide. J Air Waste Manag Assoc. 1997;47(5):551–81.CrossRef
36.
go back to reference Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.CrossRef Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.CrossRef
Metadata
Title
Outdoor air pollution from industrial chemicals causing new onset of asthma or COPD: a systematic review protocol
Authors
Harald Lux
Xaver Baur
Lygia Therese Budnik
Astrid Heutelbeck
João Paulo Teixeira
Emeri Neumann
Diana Adliene
Judita Puišo
David Lucas
Jakob Löndahl
Athanasios Damialis
Ozlem Goksel
Hans Orru
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Occupational Medicine and Toxicology / Issue 1/2020
Electronic ISSN: 1745-6673
DOI
https://doi.org/10.1186/s12995-020-00289-6

Other articles of this Issue 1/2020

Journal of Occupational Medicine and Toxicology 1/2020 Go to the issue