Skip to main content
Top
Published in: Systematic Reviews 1/2022

Open Access 01-12-2022 | Bronchial Asthma | Protocol

Computational phenotyping of obstructive airway diseases: protocol for a systematic review

Authors: Muwada Bashir Awad Bashir, Rani Basna, Guo-Qiang Zhang, Helena Backman, Anne Lindberg, Linda Ekerljung, Malin Axelsson, Linnea Hedman, Lowie Vanfleteren, Bo Lundbäck, Eva Rönmark, Bright I. Nwaru

Published in: Systematic Reviews | Issue 1/2022

Login to get access

Abstract

Background

Over the last decade, computational sciences have contributed immensely to characterization of phenotypes of airway diseases, but it is difficult to compare derived phenotypes across studies, perhaps as a result of the different decisions that fed into these phenotyping exercises. We aim to perform a systematic review of studies using computational approaches to phenotype obstructive airway diseases in children and adults.

Methods and analysis

We will search PubMed, Embase, Scopus, Web of Science, and Google Scholar for papers published between 2010 and 2020. Conferences proceedings, reference list of included papers, and experts will form additional sources of literature. We will include observational epidemiological studies that used a computational approach to derive phenotypes of chronic airway diseases, whether in a general population or in a clinical setting. Two reviewers will independently screen the retrieved studies for eligibility, extract relevant data, and perform quality appraisal of included studies. A third reviewer will arbitrate any disagreements in these processes. Quality appraisal of the studies will be undertaken using the Effective Public Health Practice Project quality assessment tool. We will use summary tables to describe the included studies. We will narratively synthesize the generated evidence, providing critical assessment of the populations, variables, and computational approaches used in deriving the phenotypes across studies

Conclusion

As progress continues to be made in the area of computational phenotyping of chronic obstructive airway diseases, this systematic review, the first on this topic, will provide the state of the art on the field and highlight important perspectives for future works.

Ethics and dissemination

No ethical approval is needed for this work is based only on the published literature and does not involve collection of any primary or human data.

Registration and reporting

Systematic review registration

PROSPERO CRD42020164898
Appendix
Available only for authorised users
Literature
2.
go back to reference Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1684–735. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1684–735.
3.
go back to reference The Global Asthma Report 2014. Auckland, New Zealand: Global Asthma Network, 2014. 2019. The Global Asthma Report 2014. Auckland, New Zealand: Global Asthma Network, 2014. 2019.
4.
go back to reference Halbert R, Natoli J, Gano A, Badamgarav E, Buist AS, Mannino D. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28(3):523–32.CrossRef Halbert R, Natoli J, Gano A, Badamgarav E, Buist AS, Mannino D. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28(3):523–32.CrossRef
5.
go back to reference Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.CrossRef Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.CrossRef
6.
go back to reference Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.
7.
go back to reference Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol. 2010;125(2):S103–S15.CrossRef Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol. 2010;125(2):S103–S15.CrossRef
8.
go back to reference Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M, et al. Healthcare expenditures for sinusitis in 1996: contributions of asthma, rhinitis, and other airway disorders. J Allergy Clin Immunol. 1999;103(3):408–14.CrossRef Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M, et al. Healthcare expenditures for sinusitis in 1996: contributions of asthma, rhinitis, and other airway disorders. J Allergy Clin Immunol. 1999;103(3):408–14.CrossRef
9.
go back to reference Wardlaw A, Silverman M, Siva R, Pavord I, Green R. Multi-dimensional phenotyping: towards a new taxonomy for airway disease. Clin Exp Allergy. 2005;35(10):1254–62.CrossRef Wardlaw A, Silverman M, Siva R, Pavord I, Green R. Multi-dimensional phenotyping: towards a new taxonomy for airway disease. Clin Exp Allergy. 2005;35(10):1254–62.CrossRef
10.
go back to reference Weatherall M, Travers J, Shirtcliffe P, Marsh S, Williams M, Nowitz M, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Eur Respir J. 2009;34(4):812–8.CrossRef Weatherall M, Travers J, Shirtcliffe P, Marsh S, Williams M, Nowitz M, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Eur Respir J. 2009;34(4):812–8.CrossRef
11.
go back to reference Rice JP, Saccone NL, Rasmussen E. Definition of the phenotype. Adv Genet. 2001;42:69–76.CrossRef Rice JP, Saccone NL, Rasmussen E. Definition of the phenotype. Adv Genet. 2001;42:69–76.CrossRef
12.
go back to reference Vanfleteren LE, Kocks JW, Stone IS, Breyer-Kohansal R, Greulich T, Lacedonia D, et al. Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms? Thorax. 2014;69(1):72–9.CrossRef Vanfleteren LE, Kocks JW, Stone IS, Breyer-Kohansal R, Greulich T, Lacedonia D, et al. Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms? Thorax. 2014;69(1):72–9.CrossRef
13.
go back to reference Basile AO, Ritchie MD. Informatics and machine learning to define the phenotype. Expert Rev Mol Diagn. 2018;18(3):219–26.CrossRef Basile AO, Ritchie MD. Informatics and machine learning to define the phenotype. Expert Rev Mol Diagn. 2018;18(3):219–26.CrossRef
14.
go back to reference Pinto LM, Alghamdi M, Benedetti A, Zaihra T, Landry T, Bourbeau J. Derivation and validation of clinical phenotypes for COPD: a systematic review. Respir Res. 2015;16(1):50.CrossRef Pinto LM, Alghamdi M, Benedetti A, Zaihra T, Landry T, Bourbeau J. Derivation and validation of clinical phenotypes for COPD: a systematic review. Respir Res. 2015;16(1):50.CrossRef
15.
go back to reference Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH. Advances in electronic phenotyping: from rule-based definitions to machine learning models. Annu Rev Biomed Data Sci. 2018;1:53–68.CrossRef Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH. Advances in electronic phenotyping: from rule-based definitions to machine learning models. Annu Rev Biomed Data Sci. 2018;1:53–68.CrossRef
16.
go back to reference Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206–11.CrossRef Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206–11.CrossRef
17.
go back to reference Che Z, Kale D, Li W, Bahadori MT, Liu Y. Deep computational phenotyping. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15. Sydney, NSW, Australia. 2783365: ACM; 2015. p. 507–16.CrossRef Che Z, Kale D, Li W, Bahadori MT, Liu Y. Deep computational phenotyping. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '15. Sydney, NSW, Australia. 2783365: ACM; 2015. p. 507–16.CrossRef
18.
go back to reference Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster analysis to define COPD phenotypes. Eur Respir J. 2010;36:472–4.CrossRef Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster analysis to define COPD phenotypes. Eur Respir J. 2010;36:472–4.CrossRef
19.
go back to reference Vazquez Guillamet R, Ursu O, Iwamoto G, Moseley PL, Oprea T. Chronic obstructive pulmonary disease phenotypes using cluster analysis of electronic medical records. Health Inform J. 2018;24(4):394–409.CrossRef Vazquez Guillamet R, Ursu O, Iwamoto G, Moseley PL, Oprea T. Chronic obstructive pulmonary disease phenotypes using cluster analysis of electronic medical records. Health Inform J. 2018;24(4):394–409.CrossRef
20.
go back to reference Burgel PR, Paillasseur J, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R, et al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur Respir J. 2010;36(3):531–9.CrossRef Burgel PR, Paillasseur J, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R, et al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur Respir J. 2010;36(3):531–9.CrossRef
21.
go back to reference Castaldi PJ, Benet M, Petersen H, Rafaels N, Finigan J, Paoletti M, et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax. 2017;72(11):998–1006.CrossRef Castaldi PJ, Benet M, Petersen H, Rafaels N, Finigan J, Paoletti M, et al. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax. 2017;72(11):998–1006.CrossRef
22.
go back to reference Jaimini U, Thirunarayan K, Kalra M, Venkataraman R, Kadariya D, Sheth A. "How Is My Child's Asthma?" Digital Phenotype and Actionable Insights for Pediatric Asthma. JMIR Pediatr Parent. 2018;1(2):e11988. Jaimini U, Thirunarayan K, Kalra M, Venkataraman R, Kadariya D, Sheth A. "How Is My Child's Asthma?" Digital Phenotype and Actionable Insights for Pediatric Asthma. JMIR Pediatr Parent. 2018;1(2):e11988.
23.
go back to reference Simons M, Busch K, Avolio A, Kiat H, Davidson A. Improving the quality of the evidence–the necessity to lead by example. J Clin Neurosci. 2017;46:165–6.CrossRef Simons M, Busch K, Avolio A, Kiat H, Davidson A. Improving the quality of the evidence–the necessity to lead by example. J Clin Neurosci. 2017;46:165–6.CrossRef
24.
go back to reference Yost J, Dobbins M, Traynor R, DeCorby K, Workentine S, Greco L. Tools to support evidence-informed public health decision making. BMC Public Health. 2014;14:728.CrossRef Yost J, Dobbins M, Traynor R, DeCorby K, Workentine S, Greco L. Tools to support evidence-informed public health decision making. BMC Public Health. 2014;14:728.CrossRef
25.
go back to reference Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version. 2006;1:b92. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version. 2006;1:b92.
26.
go back to reference Garcia-Aymerich J, Benet M, Saeys Y, Pinart M, Basagana X, Smit HA, et al. Phenotyping asthma, rhinitis and eczema in M e DALL population-based birth cohorts: an allergic comorbidity cluster. Allergy. 2015;70(8):973–84.CrossRef Garcia-Aymerich J, Benet M, Saeys Y, Pinart M, Basagana X, Smit HA, et al. Phenotyping asthma, rhinitis and eczema in M e DALL population-based birth cohorts: an allergic comorbidity cluster. Allergy. 2015;70(8):973–84.CrossRef
27.
go back to reference Halpern Y, Horng S, Choi Y, Sontag D. Electronic medical record phenotyping using the anchor and learn framework. J Am Med Inform Assoc. 2016;23(4):731–40.CrossRef Halpern Y, Horng S, Choi Y, Sontag D. Electronic medical record phenotyping using the anchor and learn framework. J Am Med Inform Assoc. 2016;23(4):731–40.CrossRef
28.
go back to reference Burgel PR, Paillasseur JL, Roche N. Identification of clinical phenotypes using cluster analyses in COPD patients with multiple comorbidities. Biomed Res Int. 2014;2014:420134. Burgel PR, Paillasseur JL, Roche N. Identification of clinical phenotypes using cluster analyses in COPD patients with multiple comorbidities. Biomed Res Int. 2014;2014:420134.
Metadata
Title
Computational phenotyping of obstructive airway diseases: protocol for a systematic review
Authors
Muwada Bashir Awad Bashir
Rani Basna
Guo-Qiang Zhang
Helena Backman
Anne Lindberg
Linda Ekerljung
Malin Axelsson
Linnea Hedman
Lowie Vanfleteren
Bo Lundbäck
Eva Rönmark
Bright I. Nwaru
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2022
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-022-02078-0

Other articles of this Issue 1/2022

Systematic Reviews 1/2022 Go to the issue