Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2020

01-09-2020 | Breast Cancer | Review

TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin

Authors: Huayan Ren, Xiaoyi Mi, Pengyuan Zhao, Xueyan Zhao, Na Wei, Huifen Huang, Zhongqin Meng, Junna Kou, Mingfang Sun, Yuqiong Liu, Hongyan Zhang, Jianping Yang, Wencai Li, Huixiang Li

Published in: Breast Cancer Research and Treatment | Issue 2/2020

Login to get access

Abstract

Purpose

TRAF4 plays an important role in the development and progression of breast cancer, but its impact on chemotherapy resistance is as yet, however, poorly understood.

Methods

Western blotting, immunoprecipitation, and immunofluorescence staining were used to identify and verify that TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation. Cell proliferation analysis and Flow cytometry analysis were utilized to detect TRAF4′s function on the growth-inhibitory effect of etoposide. Immunohistochemistry was used to detect the expression of TRAF4, SIAH1, and β-catenin. Statistical analysis was used to analyze the relationships between them with clinical parameters and curative effect of chemotherapy pathologically.

Results

Our results suggested that TRAF4 prevents SIAH1-mediated β-catenin degradation. TRAF4 was a novel substrate of SIAH1 and the TRAF domain of TRAF4 was critical for binding to SIAH1. TRAF4 reduced the growth-inhibitory effect of etoposide via reducing the number of S-phase cells and suppressing cell apoptosis. Concordantly, we found that breast cancer patients with a low-TRAF4 expression benefited most from chemotherapy, who had higher tumor volume reduction rate and better pathological response, while, the high-TRAF4 expression group had lower tumor volume reduction rate and poor pathological response.

Conclusions

TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation, which explains the protective effect of TRAF4 on β-catenin during cell stress and links TRAF4 to chemotherapy resistance in tumors. These findings implicated a novel pathway for the oncogenic function of TRAF4.
Literature
1.
go back to reference Bodai BI, Tuso P (2015) Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J 19:48–79CrossRef Bodai BI, Tuso P (2015) Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J 19:48–79CrossRef
2.
go back to reference Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD et al (2014) Breast cancer in China. Lancet Oncol 15:279–289CrossRef Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD et al (2014) Breast cancer in China. Lancet Oncol 15:279–289CrossRef
3.
go back to reference Lawrence J, Cameron D, Argyle D (2015) Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 370:20140233CrossRef Lawrence J, Cameron D, Argyle D (2015) Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 370:20140233CrossRef
4.
go back to reference Masoud V, Pagès G (2017) Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol 8:120–134CrossRef Masoud V, Pagès G (2017) Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol 8:120–134CrossRef
5.
go back to reference Esparza EM, Arch RH (2004) TRAF4 functions as anntermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci 61:3087–3092CrossRef Esparza EM, Arch RH (2004) TRAF4 functions as anntermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci 61:3087–3092CrossRef
6.
go back to reference Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA et al (2017) TRAF1 is critical for DMBA/solar UVR-induced skin carcinogenesis. J Invest Dermatol 137:1322–1332CrossRef Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA et al (2017) TRAF1 is critical for DMBA/solar UVR-induced skin carcinogenesis. J Invest Dermatol 137:1322–1332CrossRef
7.
go back to reference Regnier CH, Tomasetto C, Moog-Lutz C, Chenard MP, Wendling C, Basset P et al (1995) Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 270:25715–25721CrossRef Regnier CH, Tomasetto C, Moog-Lutz C, Chenard MP, Wendling C, Basset P et al (1995) Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 270:25715–25721CrossRef
8.
go back to reference Camilleri-Broet S, Cremer I, Marmey B, Comperat E, Viguie F, Audouin J et al (2007) TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene 26:142–147CrossRef Camilleri-Broet S, Cremer I, Marmey B, Comperat E, Viguie F, Audouin J et al (2007) TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene 26:142–147CrossRef
9.
go back to reference Zhang L, Zhou F, GarcíadeVinuesa A, deKruijf EM, Mesker WE, Hui L et al (2013) TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell 51:559–572CrossRef Zhang L, Zhou F, GarcíadeVinuesa A, deKruijf EM, Mesker WE, Hui L et al (2013) TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell 51:559–572CrossRef
10.
go back to reference Ren HY, Wang J, Yang F, Zhang XL, Wang AL, Sun LL et al (2015) Cytoplasmic TRAF4 contributes to the activation of p70s6k signaling pathway in breast cancer. Oncotarget 6:4080–4096CrossRef Ren HY, Wang J, Yang F, Zhang XL, Wang AL, Sun LL et al (2015) Cytoplasmic TRAF4 contributes to the activation of p70s6k signaling pathway in breast cancer. Oncotarget 6:4080–4096CrossRef
11.
go back to reference MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dve Cell 17:9–26CrossRef MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dve Cell 17:9–26CrossRef
12.
go back to reference Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205CrossRef Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205CrossRef
13.
go back to reference Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell 7:915–926CrossRef Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell 7:915–926CrossRef
14.
go back to reference Carthew RW, Rubin GM (1990) Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63:561–577CrossRef Carthew RW, Rubin GM (1990) Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63:561–577CrossRef
15.
go back to reference House CM, Ler A, Bowtell DD (2009) Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 69:8835–8838CrossRef House CM, Ler A, Bowtell DD (2009) Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 69:8835–8838CrossRef
16.
go back to reference Krer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK (2013) SIAH proteins: Critical roles in leukemogenesis. Leukemia 27:792–802CrossRef Krer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK (2013) SIAH proteins: Critical roles in leukemogenesis. Leukemia 27:792–802CrossRef
17.
go back to reference Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER (1997) Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46:103–111CrossRef Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER (1997) Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46:103–111CrossRef
18.
go back to reference Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90:459–467CrossRef Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90:459–467CrossRef
19.
go back to reference Wu H, Lin Y, Shi Y, Qian W, Tian Z, Yu Y et al (2010) SIAH-1 interacts with mammalian polyhomeotic homologues HPH2 and affects its stability via the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 397:391–396CrossRef Wu H, Lin Y, Shi Y, Qian W, Tian Z, Yu Y et al (2010) SIAH-1 interacts with mammalian polyhomeotic homologues HPH2 and affects its stability via the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 397:391–396CrossRef
20.
go back to reference Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT et al (2004) SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 13:1525–1534CrossRef Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT et al (2004) SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 13:1525–1534CrossRef
21.
go back to reference Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DD, Ronai Z et al (2011) Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 10:2592–2602CrossRef Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DD, Ronai Z et al (2011) Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 10:2592–2602CrossRef
22.
go back to reference Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M et al (2006) Critical function for SIP, a ubiquitin E3 ligase component of the β-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24:29–39CrossRef Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M et al (2006) Critical function for SIP, a ubiquitin E3 ligase component of the β-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24:29–39CrossRef
23.
go back to reference Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ et al (2010) Direct ubiquitination of β-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 285:13507–13516CrossRef Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ et al (2010) Direct ubiquitination of β-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 285:13507–13516CrossRef
24.
go back to reference Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C et al (2017) The SIAH E3 ubiquitin ligases promote Wnt/ β-catenin signaling through mediating Wnt-induced Axin degradation. Genes Dev 31:904–915CrossRef Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C et al (2017) The SIAH E3 ubiquitin ligases promote Wnt/ β-catenin signaling through mediating Wnt-induced Axin degradation. Genes Dev 31:904–915CrossRef
25.
go back to reference Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172CrossRef Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172CrossRef
26.
go back to reference Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537CrossRef Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537CrossRef
27.
go back to reference Rozan LM, El-Deiry WS (2006) Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther 5:1228–1235CrossRef Rozan LM, El-Deiry WS (2006) Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther 5:1228–1235CrossRef
28.
go back to reference Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7:927–936CrossRef Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7:927–936CrossRef
29.
go back to reference Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926CrossRef Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926CrossRef
30.
go back to reference Polekhina G, House CM, Traficante N, Mackay JP, Relaix F, Sassoon DA et al (2002) Siah ubiquitin ligase is structurally related to TRAF and modulates TNF- alpha signaling. Nat Struct Biol 9:68–75CrossRef Polekhina G, House CM, Traficante N, Mackay JP, Relaix F, Sassoon DA et al (2002) Siah ubiquitin ligase is structurally related to TRAF and modulates TNF- alpha signaling. Nat Struct Biol 9:68–75CrossRef
31.
go back to reference Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D et al (2002) Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 21:5756–5765CrossRef Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D et al (2002) Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 21:5756–5765CrossRef
32.
go back to reference Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian seven-in-absentia homolog 2. J Cell Biochem 100:151–160CrossRef Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian seven-in-absentia homolog 2. J Cell Biochem 100:151–160CrossRef
33.
go back to reference Niu F, Ru H, Ding W, Ouyang S, Liu ZJ (2013) Structural biology study of human TNF receptor associated factor 4 TRAF domain. Protein Cell 4:687–694CrossRef Niu F, Ru H, Ding W, Ouyang S, Liu ZJ (2013) Structural biology study of human TNF receptor associated factor 4 TRAF domain. Protein Cell 4:687–694CrossRef
34.
go back to reference Yoon JH, Cho YJ, Park HH (2014) Structure of the TRAF4 TRAF domain with a coiled-coil domain and its implications for the TRAF4 signalling pathway. Acta Crystallogr D Biol Crystallogr 70:2–10CrossRef Yoon JH, Cho YJ, Park HH (2014) Structure of the TRAF4 TRAF domain with a coiled-coil domain and its implications for the TRAF4 signalling pathway. Acta Crystallogr D Biol Crystallogr 70:2–10CrossRef
35.
go back to reference Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692CrossRef Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692CrossRef
36.
go back to reference Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325:1134–1138CrossRef Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325:1134–1138CrossRef
37.
go back to reference Li W, Peng C, Lee MH, Lim D, Zhu F, Fu Y et al (2013) TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res 73:6938–6950CrossRef Li W, Peng C, Lee MH, Lim D, Zhu F, Fu Y et al (2013) TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res 73:6938–6950CrossRef
38.
go back to reference Bradley JR, Pober JS (2001) Tumor necrosis factor receptor associated factors (TRAFs). Oncogene 20:6482–6491CrossRef Bradley JR, Pober JS (2001) Tumor necrosis factor receptor associated factors (TRAFs). Oncogene 20:6482–6491CrossRef
Metadata
Title
TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin
Authors
Huayan Ren
Xiaoyi Mi
Pengyuan Zhao
Xueyan Zhao
Na Wei
Huifen Huang
Zhongqin Meng
Junna Kou
Mingfang Sun
Yuqiong Liu
Hongyan Zhang
Jianping Yang
Wencai Li
Huixiang Li
Publication date
01-09-2020
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2020
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-020-05789-x

Other articles of this Issue 2/2020

Breast Cancer Research and Treatment 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine