Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Breast Cancer | Research

The role of AKR1 family in tamoxifen resistant invasive lobular breast cancer based on data mining

Authors: Dong Xu, Yiqi Zhang, Feng Jin

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Tamoxifen (TAM) resistance to invasive lobular cell carcinoma is a challenge for breast cancer treatment. This study explored the role of Aldo-keto reductase family 1 (AKR1) family in tamoxifen-resistant aggressive lobular breast cancer based on data mining.

Methods

TAM-resistant invasive lobular breast cancer gene chip was downloaded from the Gene Expression Omnibus (GEO) database (accession-numbered as GSE96670). The online analytical tool GEO2R was used to screen for differentially expressed genes in TAM-resistant invasive lobular breast cancer cells and TAM-sensitive counterparts. A protein-protein interaction (PPI) networks were constructed using the STRING online platform and the Cytoscape software. GeneMANIA and GSCALite online tools were used to reveal the potential role of these hub genes in breast cancer progression and TAM resistance development. And the used the GSE67916 microarray data set to verify the differentially expression of these hub genes in breast cancer. The protein expression levels of AKR1C1, AKR1C2 and AKR1C3 in TAM-sensitive and resistant breast cancer cells were compared. The TAM sensitivity of breast cancer cells with or without AKR1C1, AKR1C2 or AKR1C3 gene manipulation was evaluated by cell viability assay.

Results

A total of 184 differentially expressed genes were screened. Compared with TAM sensitive breast cancer cells, 162 were up-regulated and 22 were down-regulated. The study identified several hub genes in the PPI network that may be involved in the development of TAM resistance of breast cancer, including signal transducer and activator of transcription 1 (STAT1), estrogen receptor alpha (ESR1), fibronectin1 (FN1), cytochrome P4501B1 (CYP1B1), AKR1C1, AKR1C2, AKR1C3 and uridine diphosphate glucuronosyltransferase (UGT) 1A family genes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10). Compared with TAM-sensitive counterparts, the expression levels of AKR1C1, AKR1C2, and AKR1C3 were up-regulated in TAM-resistant breast cancer cells.

Conclusions

Overexpression of each of these three genes significantly increased the resistance of breast cancer cells to TAM treatment, while their knockdown showed opposite effects, indicating that they are potential therapeutic target for the treatment of TAM-resistant breast cancer.
Appendix
Available only for authorised users
Literature
13.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–d13. https://doi.org/10.1093/nar/gky1131.CrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–d13. https://​doi.​org/​10.​1093/​nar/​gky1131.CrossRef
19.
go back to reference Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, et al. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci Rep. 2018;38(6). https://doi.org/10.1042/BSR20180595. Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, et al. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci Rep. 2018;38(6). https://​doi.​org/​10.​1042/​BSR20180595.
24.
go back to reference Nam YS, Im KI, Kim N, Song Y, Lee JS, Jeon YW, et al. Down-regulation of intracellular reactive oxygen species attenuates P-glycoprotein-associated chemoresistance in Epstein-Barr virus-positive NK/T-cell lymphoma. Am J Transl Res. 2019;11(3):1359–73.PubMedPubMedCentral Nam YS, Im KI, Kim N, Song Y, Lee JS, Jeon YW, et al. Down-regulation of intracellular reactive oxygen species attenuates P-glycoprotein-associated chemoresistance in Epstein-Barr virus-positive NK/T-cell lymphoma. Am J Transl Res. 2019;11(3):1359–73.PubMedPubMedCentral
30.
go back to reference Yang X, Hu Q, Hu LX, Lin XR, Liu JQ, Lin X, et al. miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discov Med. 2017;24(131):75–85.PubMed Yang X, Hu Q, Hu LX, Lin XR, Liu JQ, Lin X, et al. miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discov Med. 2017;24(131):75–85.PubMed
Metadata
Title
The role of AKR1 family in tamoxifen resistant invasive lobular breast cancer based on data mining
Authors
Dong Xu
Yiqi Zhang
Feng Jin
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-09040-8

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine